説明

Fターム[4C601DD07]の内容

超音波診断装置 (54,713) | 測定対象 (3,791) | 脈拍、心拍 (65)

Fターム[4C601DD07]に分類される特許

1 - 20 / 65


【課題】血管壁の弾性率計測を行なう超音波診断装置において、解析する心拍に対応する適正なBモード画像を表示することができる超音波診断装置を提供する。
【解決手段】B/Mモード表示において、Mモード画像中で心拍を選択する手段を有し、心拍が選択されたら、心拍を中心とする心拍の140%の期間内で予め設定された所定位置に応じて、選択された心拍の所定位置のBモード画像を表示することにより、前記課題を解決する。 (もっと読む)


【課題】血管壁の弾性率計測を行なう超音波診断装置において、計測に必要な心拍のみのMモード画像を表示する。
【解決手段】B/Mモードでの表示中にフリーズされたら、Mモード画像中のフリーズ時の心拍、あるいはされらにフリーズ直前の心拍を切り捨てて、Mモード画像を表示することにより、前記課題を解決する。 (もっと読む)


【課題】血管壁の弾性率計測等を行なう超音波診断装置において、診断のために超音波画像中で設定した関心領域の位置を容易に把握することができ、良好な経過観察等を行うことを可能にする。
【解決手段】関心領域に対する超音波画像を得るための超音波の送受信に、関心領域の設定時に対応する超音波画像を得るための超音波の送受信を組み込み、両超音波画像を対応付けして記憶することにより、前記課題を解決する。 (もっと読む)


【課題】血管壁の弾性率計測を行なう超音波診断装置において、弾性率の計測に好適な血管の心拍を選択することができる超音波診断装置を提供する。
【解決手段】Bモード画像中のアジマス方向の所定間隔でMモード画像を記憶しておき、Bモード画像中におけるアジマス方向の位置選択に応じて、選択された位置のMモード画像をBモード画像と共に表示することにより、前記課題を解決する。 (もっと読む)


【課題】 血管壁の弾性率計測を行なう超音波診断装置において、血管前壁の境界を検出するすることができる超音波診断装置を提供する。
【解決手段】 Bモード画像およびMモード画像を生成して、Mモード画像中におけるBモード画像に対応する時相を用いて、Bモード画像の血管前壁境界を検出することにより、前記課題を解決する。 (もっと読む)


【課題】測定装置と被検者との相対位置のズレに対するロバスト性を高めた超音波測定装置の提供。
【解決手段】超音波測定装置2の超音波振動子アレイ10は、測定開始前に、測定対象の長手方向に沿って位置合わせされる第1アレイ12と、第1アレイ12の超音波振動子が直線上に配列される第1軸方向に対して交差する第2軸方向に直線上に超音波振動子を配列した第2アレイ14とを備える。第1アレイ12による測定値から位置合わせからずれたと判断される場合、稼動対象を第2アレイ14に切り換える。 (もっと読む)


【課題】組織パラメータを決定するためのシステムを提供すること。
【解決手段】上記システムは、プロービング信号を組織に適用する手段であって、上記プロービング信号は、上記組織と相互作用するように構成されている、手段と、2つの連続の心臓収縮の間の間隔より長い間隔にわたって応答信号を監視する手段と、上記応答信号の振幅を決定する手段と、上記応答信号の上記振幅に基づいて、上記組織の血液循環のレベルを決定する手段と、上記血液循環のレベルに基づいて、組織パラメータを決定する手段とを含む。 (もっと読む)


【課題】異なる時期の間での心機能の変化を定量的に解析する際の信頼性を容易に向上させること。
【解決手段】実施形態の超音波診断装置は、入力部3と、選択部17aとを備える。入力部3は、被検体Pの複数心拍分の超音波画像群から、少なくとも1心拍分の超音波画像群を第1の部分データとして受け付ける。選択部17aは、第1の部分データの収集期間における被検体Pの心拍数を基準心拍数とし、第1の部分データとは異なる時期の被検体Pの超音波画像群から基準心拍数に対して所定の範囲内にある心拍数を有する超音波画像群を第2の部分データとして選択する。 (もっと読む)


【課題】 測定感度を向上する。
【解決手段】 感度試験装置(1000)は、超音波伝播可能な本体(1100)と、本体の第1平面(1002)に設けられた第1ゲル層(1010)と、第2平面(1004)に設けられた第2ゲル層(1020)とを備え、第1ゲル層は、保護シート(1030)によって保護されている。
保護シート1030には、被検査装置(1040)の探触子(1060)が当接される。
第2ゲル層には、標準反射体としての振動板(1050)が接しており、振動板は駆動部(1052)に連結されている。振動板は、駆動部(1008)によって駆動されつつ、探触子から発信された超音波を反射し、ドプラ信号を生成する。ドプラ信号は探触子によって検出される。 (もっと読む)


【課題】簡単な構成で被検出物の位置を検出できる超音波センサー、測定装置、および測定システムを提供する。
【解決手段】プローブ10は、基板11と、基板面に設けられた4つ以上の超音波アレイ12と、超音波アレイ12から発信される超音波の発信角度を制御する遅延制御部と、を具備し、超音波アレイ12は、超音波を発信可能な超音波振動子が、走査直線方向Aに沿って複数配設された1次元アレイ構造を備え、遅延制御部は、各超音波素子から超音波を発信するタイミングを遅延させて、超音波アレイ12から発信される超音波の発信角度を制御する。そいて、各超音波アレイ12は、それぞれ走査直線方向Aが異ならせて、かつ、互いに離間した位置に配設された。 (もっと読む)


【課題】既に使用中のベッドマットレスに容易に設置でき、安価で製造でき、高感度の生体情報の検出ができる生体情報測定装置を提供することである。
【解決手段】空洞部を有する導波路体と、前記導波路体の任意の位置に配設し検出波を導波路内に送信する送信手段と、前記導波路体の任意の位置に配設し、前記送信手段から送信され前記導波路内を伝搬されてくる検出波を受信する受信手段と、前記受信手段で受信した、振幅変調された包絡線検波または位相変調された位相検波から、被験者の生体情報を測定する生体情報処理手段と、を含む手段からなる生体情報測定装置によって実現できた。 (もっと読む)


【課題】胎児が標本化容積の外部に移動しても胎児の心拍数信号を捕える。
【解決手段】 母体(12)の腹部(16)の表面に配置された超音波プローブ(14)は、送波面(32)を有する筐体(24)の内部に配置された複数の超音波トランスデューサ(30)を含んでいる。送波面(32)は、複数の超音波トランスデューサ(30)によって形成される個別の超音波ビームを脱焦するように構成されている。送波面(32)は超音波ビームを脱焦して、さらに広い面積の超音波プローブ(14)の視野範囲を形成する。心拍数モニタ(10)に収容されている制御器(90)は、超音波プローブ(14)が胎児の心拍の位置を突き止めることを可能にしつつ信号対雑音比を低下させるように複数の超音波トランスデューサ(30)の異なる組み合わせを選択的に起動し、後に連続式心拍数監視時には信号対雑音比を高める。 (もっと読む)


【課題】母親の腹部に付着された1つまたは複数の超音波トランスデューサ(24)を使用する連続的な非侵襲的胎児心拍数測定を提供すること。
【解決手段】各超音波トランスデューサ(24)は、ある信号強度を有する超音波ビーム(26)を生成する。この信号強度は、超音波トランスデューサ(24)に印加された励振電圧によって決定される。励振電圧調整デバイス(36)は、超音波ビームの強度を選択的に制御するために、励振電圧発生器(32)と超音波トランスデューサ(24)の間に位置決めされる。ユーザ入力デバイス(44)によって、オペレータは、胎児心拍数モニタ(10)の表示深度を変化させるように超音波信号強度を制御することができる。 (もっと読む)


【解決手段】 システム(10)は、胎児心臓のモニタリングに応答してAECG/PCG信号(30)を生成するAECG/PCGセンサ(12)と、胎児心臓のモニタリングに応答してUS信号(32)を生成するUSトランスデューサ(14)と、AECG/PCG信号(30)の品質を評価して、AECG/PCG信号(30)の評価された品質を選択可能なしきい値と比較するコンピュータ(40)とを具備する。コンピュータ(40)は、AECG/PCG信号(30)の評価された品質が選択可能なしきい値を超えている限り、USトランスデューサ(14)を動作不能にし、胎児心拍数推定値を提供するためにAECG/PCG信号(30)を処理する。AECG/PCG信号(30)の評価品質がしきい値以下である場合だけ、USトランスデューサ(14)を動作可能にし、胎児心拍数推定値を提供するためにUS信号(32)を処理する。 (もっと読む)


【課題】 超音波送信用の圧電素子と超音波受信用の圧電素子とを精度良く配置することで、品質のばらつきが生じにくい脈検出装置を提供する。また、脈検出装置において脈の検出感度を向上させる。
【解決手段】 入力された駆動電圧信号に従って励振して超音波を発生し、該超音波を生体内に送信する送信用圧電素子41と、生体内に送信された超音波が生体の血流によって反射した反射波を受信して電圧信号に変換する受信用圧電素子42と、を基板43の電極47a、47bで固定する。また、処理演算部は、送信用圧電素子41が発生した超音波の周波数と、受信用圧電素子42が受信した反射波の周波数と、を比較して脈を検出する。 (もっと読む)


【課題】対象組織に関する運動のゆがみを低減した再構成処理を実現する。
【解決手段】基準画像探索部26は、前メモリ14に記憶された複数の断層画像データの中から、仮想周期の間隔で複数の基準画像を探索する。仮想周期は、仮想周期設定部24により設定される。再構築処理部20は、複数の基準画像の各々を分割の単位とすることにより、複数の断層画像データを複数の画像群に分割し、複数の画像群の各々から互いに周期的に対応した複数の断層画像データを抽出する再構成処理を実行する。参照画像形成部30は、再構成処理後の画像列に基づいて参照画像を形成する。そして、参照画像を参照したユーザからの指示に応じて、仮想周期設定部24が仮想周期を修正する。仮想周期の修正と参照画像を利用したゆがみの評価が繰り返されて、ゆがみが小さくなるように仮想周期が調整される。 (もっと読む)


【課題】 超音波送信用の圧電素子と超音波受信用の圧電素子とを精度良く配置することで、品質のばらつきが生じにくい脈検出装置を提供する。また、脈検出装置において脈の検出感度を向上させる。
【解決手段】 入力された駆動電圧信号に従って励振して超音波を発生し、該超音波を生体内に送信する送信用圧電素子41と、生体内に送信された超音波が生体の血流によって反射した反射波を受信して電圧信号に変換する受信用圧電素子42と、を基板43の電極47a、47bで固定する。また、処理演算部は、送信用圧電素子41が発生した超音波の周波数と、受信用圧電素子42が受信した反射波の周波数と、を比較して脈を検出する。 (もっと読む)


超音波画像診断システムは、胎児心臓について検出された動きから合成される同期信号を用いて、胎児心臓の3Dデータのセットを収集する。一連の一時的に異なるエコー信号が、例えば、胎児の頚動脈の中又は胎児の心筋を横断するMラインの中のサンプルの体積のような、検出されるべき心拍のサイクルを示す動きのある生体構造の中の位置から収集される。心拍サイクル信号は、検出された動きから合成され、胎児心臓の拍動のサイクルの一つ以上の所望の位相において胎児心臓の画像データの収集を同期するために用いられる。示される実施形態において、3Dデータのセットは、胎児心臓の拍動の完全なサイクルにわたって、複数の副体積から収集される。次に、胎児心臓を鼓動させる、活動する3Dのループを生成するために結合される。
(もっと読む)


超音波データを使って少なくとも一つの動いている解剖学的構造を認識する方法が、超音波データを受領する(100)ことによって動作する。超音波データは、少なくとも一つの解剖学的構造の速度を表すドップラー偏移情報を含む。超音波データはまず一連の時間枠に分割される(102)。次いで、ドップラー偏移情報を使って各時間枠に分類が割り当てられる(104)。次いで、各時間枠の分類を使って前記少なくとも一つの解剖学的構造が認識される。これが可能なのは、異なる解剖学的構造がドップラー偏移情報において異なるパターンを生じるからである。
(もっと読む)


【課題】 画像データに基づいた音響的な擬似心拍音の出力
【解決手段】 特徴量計測部7は、胎児心臓に対する超音波検査において画像データ生成部4が生成する時系列的な画像データの中から基準画像データとこの基準画像データに後続する複数枚の画像データを選択し、画像データ間のトラッキング処理により基準画像データの胎児心臓に対して関心点設定部6が設定した関心点の前記複数枚の画像データにおける変位を特徴量として計測する。次に、心拍周期計測部9は、前記特徴量の時間的変化を示す特徴量トレンドデータの繰り返し周期に基づいて胎児心臓の心拍周期を計測し、表示部10は、得られた心拍周期の情報を前記複数の画像データに後続して得られる時系列的な画像データの各々に付加して表示する。一方、心拍音出力部13は、心拍音信号生成部12が前記心拍周期に基づいて生成した擬似心拍音信号を用いて擬似心拍音を出力する。 (もっと読む)


1 - 20 / 65