説明

Fターム[4D015DC03]の内容

凝集又は沈殿 (21,364) | 凝集剤の形態;凝集剤成分のイオン性、機能的表現 (1,616) | 凝集剤の形態 (686) | 懸濁液、エマルジョン、酸コロイド (104)

Fターム[4D015DC03]に分類される特許

1 - 20 / 104



【課題】本発明は、浮遊するアオコを凝集し沈降させて水面を浄化するとともに、水底の嫌気性バクテリアの活動を抑制して硫化水素等の悪臭の発生を防止することができる水質改善方法を提供する。
【解決手段】本発明は、水酸化マグネシウム類をアオコに対し散布する水質改善方法である。好ましくは、前記水酸化マグネシウム類をスラリーにしてアオコに対し散布する水質改善方法である。また、さらに好ましくは、前記水酸化マグネシウム類の平均粒子径が0.1〜100μmである水質改善方法である。 (もっと読む)


【課題】 保存安定性に優れ、処理水中の鉄成分の残留量を低減させることが可能な塩基性塩化第二鉄を提供することを目的とする。
【解決手段】 無機酸を含有させ、塩基性塩化第二鉄溶液の平均分散粒子径を特定の範囲に制御することにより上記課題を解決した。即ち、塩基度が5〜60%であり、無機酸を含有し、平均分散粒子径が3〜50nmであることを特徴とする塩基性塩化第二鉄溶液である。また、塩化第二鉄と無機酸の混合溶液にアルカリ剤を添加することを特徴とする上記塩基性塩化第二鉄溶液の製造方法である。 (もっと読む)


【課題】遠心脱水機を用いて汚泥を固液分離する際に、脱離液の発泡を効果的に抑制する方法を提供することを目的とする。
【解決手段】本発明の発泡抑制方法は、下水混合生汚泥、下水余剰汚泥、および消化汚泥からなる群から選択される少なくとも一種の汚泥に、凝集剤を添加する工程Aと;工程Aで得た凝集剤を含む汚泥を、遠心脱水機を用いて固液分離し、脱離液と脱水ケーキとに分離する工程Bと;を含む。凝集剤は、ノニオン性界面活性剤により、連続相である炭化水素中に、所定の構造単位を有する水溶性高分子を含む水溶液が分散相として分散されてなる油中水型エマルションを含む。当該油中水型エマルションは、単量体を、架橋剤の非存在下、または単量体の総質量に対して0を超えて50質量ppm以下の架橋剤存在下で乳化重合することにより得られる。 (もっと読む)


【課題】簡易且つ効率的に汚染水を浄化する方法の提供。
【解決手段】汚染物質濃度が1μg/L以上10g/L以下である水に、平均粒径が100nm以上且つ500μm以下の粒径を有する吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を添加すること、水中の汚染物質の少なくとも一部を吸着剤に吸着させること、汚染物質が吸着した吸着剤を鉄系凝集剤によって沈降させること、及び沈降物を水から除去すること、を含む水の浄化方法であって、水1Lに対する前記浄化剤の添加量が0.01g以上20g以下であることを特徴とする、水の浄化方法である。 (もっと読む)


【課題】
生分解性が劣る化学物質を多く含む化学工場からの排水の化学的酸素要求量(COD)を低下させるのには生物学手段では困難である。該CODを短時間でかつ大きな施設を必要とせず汚泥発生量を極小化できるCOD低下方法を提供する。
【解決方法】
CODに寄与する成分を130℃以上の温度で加熱活性化したシリカ酸化物を含む固体触媒と接触させることにより酸化処理する。処理後の排水中の分散物を孔拡散・濾過法により除去することにより排水を清浄化する。 (もっと読む)


【課題】
本発明の課題は、下水処理場における下水混合生汚泥や下水余剰汚泥、下水消化汚泥、各種余剰汚泥に対して良好な凝集とケーキ含水率低下能の高い汚泥脱水剤を開発することにより、種々の脱水機に対応でき、脱水ケーキ含水率低下の要求を満足し、同時に架橋あるいは分岐した水性高分子の難点とされる薬剤添加量の増加にも対応でき汚泥脱水剤を、ポリアミジン系水溶性高分子を用いず、市販品として汎用されている(メタ)アクリル系単量体を使用して開発する。
【解決手段】
下記(A)と下記(B)を含有する凝集処理剤によって達成できる。
(A);特定のカチオン性単量体80〜100モルとその他の単量、および前記単量体混合物に対し20〜300ppmの架橋性単量体を添加して重合した水性高分子。
(B);(A)とは異なる特定のカチオン性単量体80〜100モルとその他の単量体を添加して重合した水性高分子。
(もっと読む)


【課題】
種々の脱水機に対応でき、脱水ケーキ含水率低下の要求を満足し、同時に架橋あるいは分岐した水性高分子の難点とされる薬剤添加量の増加にも対応でき汚泥脱水方法を、ポリアミジン系水性高分子を用いず、市販品として汎用されている(メタ)アクリル系単量体を使用したカチオン性あるいは両性水性高分子を用いた汚泥脱水方法を開発する。
【解決手段】
特定の構造単位のうち一種を70〜100モル%有するカチオン性あるいは両性水性高分子(A)を添加した後、前記カチオン性あるいは両性水性高分子(A)のうち、共重合率あるいは前記カチオン性あるいは両性水性高分子(A)に使用した単量体とは異なる単量体を使用した構造単位70〜100モルを有するカチオン性あるいは両性水性高分子(B)あるいは他の構造単位70〜100モルを有するカチオン性あるいは両性水性高分子(B)を添加することによって達成できる。
(もっと読む)


【課題】汚泥や廃水の処理において安定性に優れる粗大なフロックを形成し、かつ、凝集処理速度の速い高分子凝集剤を提供する。
【解決手段】一般式(1)で示される単量体(M1)等からなる構成単位を10モル%以上有する(共)重合体からなる高分子凝集剤。


[式中、R1は水素原子又はメチル基、R2は炭素数1〜10のアルキレン基、R3〜R5はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO42-を表す。] (もっと読む)


【課題】浄水処理設備における使用済みの粒状活性炭を再利用するのに際して、低コストでより多くの使用済み粒状活性炭を再利用可能とするとともに、精製される浄水への水質リスクを抑える。
【解決手段】取水した原水A中の汚泥Bを凝集して沈殿させる凝集沈殿池2と、この凝集沈殿池2から排出された汚泥Bを濃縮する濃縮槽7と、この濃縮槽7で濃縮された汚泥Bを保持して脱水機9に供給する給泥槽8とを備えた浄水処理設備にあって、この浄水処理設備における凝集沈殿池2からの沈殿処理水に粒状活性炭吸着設備において接触させられた使用済み粒状活性炭Gと、他の浄水処理設備における凝集沈殿池からの沈殿処理水に粒状活性炭接触池4において接触させられた使用済み粒状活性炭Gとのうち少なくとも一方を粉砕して粉砕活性炭Hとし、この粉砕活性炭Hを濃縮槽7と給泥槽8の少なくとも一方に供給する。 (もっと読む)


【課題】
水膨潤性マイクロゲル、架橋あるいは分岐水性高分子の問題点とされる処理可能な添加量域増加によるコスト上昇を解決するため、これら水性高分子粒子製造時に、油中水型エマルジョンの粒径を制御することにより、現状よりも微細な粒径の水性高分子を市販品として汎用されている(メタ)アクリル系単量体を使用して開発すること。
【解決手段】
特定の単量体と単量体あるいは該単量体混合物に対して質量で20〜300ppmの架橋性単量体を含有させた単量体混合物水溶液を分散相、水と非混和性の炭化水素を連続相となるように界面活性剤によって乳化し重合したカチオン性または両性水性高分子の油中水型エマルジョンであって、レーザー回折による散乱式粒度分布計によって測定した粒径が0.5μm以下である汚泥処理剤によって達成できる。また該油中水型エマルジョン二種の配合物も同様に使用できる。
(もっと読む)


【課題】 水への溶解性を維持しつつ、フロックの強度に優れる高分子凝集剤を提供する。
【解決手段】 水溶性不飽和モノマー(a)を含有する重合性モノマーを、ハロゲン原子および/またはカルボニル基を有する遷移金属化合物(b)、有機ハロゲン化物(c)、並びに(b)の遷移金属原子に配位し得るNまたはP原子を有する化合物(d)の存在下で活性エネルギー線を照射して重合させてなる水溶性(共)重合体を含有してなる高分子凝集剤;並びに、前記高分子凝集剤を汚泥または廃水に添加、混合してフロックを形成させ、固液分離することを特徴とする汚泥または廃水の処理方法である。 (もっと読む)


【課題】
本発明の課題は、下水処理場における下水混合生汚泥や下水余剰汚泥、下水消化汚泥、各種余剰汚泥に対して良好な凝集とケーキ含水率低下能の高い汚泥脱水剤を開発することである。具体的にはアミジン系水性高分子の一部そのまま使用し、市販品として汎用されている(メタ)アクリル系水性高分子により置き換える処方を検討する。
【解決手段】
下記(A)と下記(B)を含有する凝集処理剤によって達成できる。
(A);特定のカチオン性単量体80〜100モルとその他の単量、および前記単量体混合物に対し20〜300ppmの架橋性単量体を添加して重合した水性高分子。
(B); アミジン構造単位を有する水性高分子。
これら(A)と(B)を含有する凝集処理剤は、どのような製品形態でも使用可能であるが、油中水型エマルジョンあるいはこの油中水型エマルジョンをエマルジョンブレイクした固化物を造粒し、乾燥した粉末品が特に好ましい。

(もっと読む)


【課題】NF膜又はRO膜の閉塞を防止し、好気性生物処理水から効率よく水を回収することができる好気性生物処理水からの水の回収方法を提供する。
【解決手段】有機性排水を好気的に生物処理した好気性生物処理水をMF膜又はUF膜装置に供給して濾過した後、NF膜又はRO膜装置で脱塩して水を回収する方法であって、該好気性生物処理水が、生物処理中に生成する生物代謝物を含み、且つ、Langelier指数>0である好気性生物処理水からの水の回収方法において、該MF膜又はUF膜装置に供給する被処理水のpHを5.5以下とすることを特徴とする好気性生物処理水からの水の回収方法。 (もっと読む)


【課題】 汚泥等の脱水処理において、強固な粗大フロックを形成させて汚泥の脱水処理効率を大幅に向上できる高分子凝集剤を提供する。
【解決手段】 ハロゲンイオンを対イオンとする3級アミン塩基または4級アンモニウム塩基を有する水溶性不飽和モノマー(a1)を必須モノマーとする水溶性不飽和モノマー
(a)を含有する不飽和モノマーが、2個以上のカルボキシル基を有する飽和脂肪族ポリカルボン酸および/またはその塩(b)の存在下でラジカル重合されてなる水溶性ポリ
マー(A)を含有する高分子凝集剤。 (もっと読む)


【課題】 フェノール類を含む高COD排水に対し、従来の生物学的処理法に比べてオペレーション技術の簡易化、設備の小型化、エネルギーコストの削減が可能な排水処理方法を提案する。
【解決方法】
該排水の電導度が2mS/cm以上の場合、鉄を電極にした電気分解を行う。pHを6以上9未満に調整し微粒子を発生させ、これを沈殿除去後水酸化第2鉄コロイド粒子を加えて沈殿除去する。孔拡散・ろ過法で固液分離する。
電導度が2mS/cm未満の場合、酸化剤を加えた後に、塩化第1鉄水溶液または塩化第2鉄水溶液を加えるか、あるいは塩化第1鉄と塩化第2鉄を混合した水溶液を加えるか、あるいは平均粒径4nm以上30nm未満の水酸化第2鉄コロイドを加える。pHを5以上9未満に調整してした沈殿物を除去し水酸化第2鉄コロイドの添加および高分子膜を用いての沈殿物の固液分離する。 (もっと読む)


【課題】 水への溶解性を維持しつつ、フロックの強度に優れる高分子凝集剤を提供する。
【解決手段】 水溶性1価不飽和モノマー(a)および下記一般式(1)で表される多価不飽和モノマー(b)を含有する重合性モノマーを逆相懸濁重合させた水溶性共重合体(A)を含有する高分子凝集剤(X)。
(CH2=CR1COO)n−Z (1)
[式(1)中、R1はHまたはメチル基、nは2以上の整数、Zはn価の炭素数4〜50の(ポリ)エーテル基および/または炭素数4〜800の(ポリ)シロキサン基を表す。] (もっと読む)


【課題】製造工程が簡単なだけでなく、低コストで、しかも高品質の塩化第二鉄溶液の製造方法を提供する。
【解決手段】塩酸酸洗廃液を原料とする塩酸回収製造プロセスにおいて、次式(1)の焙焼反応
2FeCl2+1/2O2+2H2O→Fe2O3+4HCl --- (1)
によって酸化第二鉄と塩酸を生成させ、ついで生成した塩酸を回収し、この回収した高温の塩酸の一部を直接溶解反応槽に供給し、該回収塩酸を溶解反応槽内で撹拌する一方、併せて回収した酸化第二鉄を、溶解反応槽の上部から、該回収塩酸の遊離塩酸分に対しモル比で1.3〜2.5の割合で供給し、次式(2)の反応
Fe2O3+6HCl→2FeCl3+3H2O --- (2)
により、該回収酸化第二鉄を該回収塩酸に直接溶解させて塩化第二鉄溶液とする。 (もっと読む)


【課題】
下水処理場における下水混合生汚泥や下水余剰汚泥、下水消化汚泥、各種余剰汚泥に対して良好な凝集とケーキ含水率低下能の高い汚泥脱水剤を開発することである。種々の脱水機に対応でき、脱水ケーキ含水率低下の要求を満足し、同時に架橋あるいは分岐した水性高分子の難点とされる薬剤添加量の増加にも対応でき汚泥脱水剤を、ポリアミジン系水溶性高分子を用いず、市販品として汎用されている(メタ)アクリル系単量体を使用して開発することである。
【解決手段】
汚泥脱水の際に、特定の構造単位を有する高カチオン性であり、高架橋性水性高分子からなる油中水型高分子エマルジョンを添加、攪拌して凝集させた後、脱水機にて脱水することにより達成できる。前記水性高分子は、油中水型エマルジョン重合時に架橋性単量体を20〜300ppm共存させ重合したものであり、またカチオン性単量体共重合率は80〜100モル%である。
(もっと読む)


【課題】 汚泥または廃水の処理において、強固な粗大フロックを形成させて汚泥の脱水処理効率を大幅に向上する等、脱水効果に優れた高分子凝集剤を提供する。
【解決手段】 下記一般式(1)で表されるビニル基含有モノマー(a)、または(a)および下記一般式(2)で表される(メタ)アクリロイル基含有モノマー(b)を構成単位とする水溶性重合体(A)を含有してなる高分子凝集剤。CH2=CH−(NR12 (1)
CH2=CR3−CO−X−(Q−N+456・Z-) m(H)1-m (2) (もっと読む)


1 - 20 / 104