説明

Fターム[4D040BB42]の内容

Fターム[4D040BB42]に分類される特許

201 - 220 / 473


【課題】処理水中に含まれる混入物(例えば、有機物など)を効果的に除去し得る水処理装置および水処理方法を提供する。
【解決手段】処理水中にマイクロナノバブルを発生させるマイクロナノバブル発生部43またはナノバブルを発生させるナノバブル発生部42と、マイクロナノバブルまたはナノバブルが発生した後の処理水を導入する第2槽15と、第2槽15内に導入される処理水と接触可能に設けられる、ポリビニルアルコールからなる担体16と、を備え、担体16は細孔を有するとともに、担体16上には微生物が固定化されている。 (もっと読む)


【課題】安価で、設置が容易で、水面付近のみへの設置も可能な水質浄化構造物を提供する。
【解決手段】少なくとも一部を水中に浸漬して設置される水質浄化構造物1であって、少なくとも二つの係留手段2に取り付けられて保持された担体懸吊手段3と、担体懸吊手段3に、並列するように吊り下げられた複数の微生物固定化担体4とを具える、水質浄化構造物。 (もっと読む)


【課題】被処理水の硝酸性窒素濃度が変動した場合であっても、被処理水の硝酸性窒素濃度を常時目標濃度以下に低減する方法を提供する。
【解決手段】少なくとも脱窒菌が担持されている担体と、非多孔性膜を少なくとも一部に備える密封構造の容器内に脱窒菌のエネルギー源となる電子供与体6が充填されている電子供与体供給装置とを含み、担体が電子供与体供給装置の非多孔性膜部分の周りに配置されているバイオリアクター8を被処理水10に浸漬し、バイオリアクター8では電子供与体6が脱窒菌に供給されて脱窒処理が行われ、被処理水10に含まれる硝酸性窒素の濃度が低減される排水処理方法において、被処理水10の硝酸性窒素濃度がバイオリアクター8の脱窒処理能力を超えたとき、電子供与体供給装置からの電子供与体6の供給とは別に、電子供与体6を被処理水10に直接添加し、被処理水10の硝酸性窒素濃度を目標濃度以下に低減するようにした。 (もっと読む)


【課題】 環境への影響が懸念されることのない、微生物の定着性の良好な微生物担持光触媒含有水質浄化用焼結体を提供する。
【解決手段】 水系の底部から得られる浚渫底泥と酸化チタンと珪酸ナトリウムとを、固形分重量比にて、それぞれ、43〜81%と6〜17%と13〜46%の割合で配合してなる組成物を焼成して得られた多孔質構造の焼結体に、水質浄化の目的とされた水域から採取された、水質汚染物質を分解する水質浄化用微生物を担持せしめることにより、目的とする微生物担持光触媒含有水質浄化用焼結体とする。 (もっと読む)


【課題】原水中のアンモニア性窒素の硝化処理に必要な無機炭素を安価で簡便に供給することができる硝化処理方法を提供する。
【解決手段】原水中のアンモニア性窒素を、硝化槽を用いて硝化菌により生物学的に亜硝酸性窒素または硝酸性窒素へ硝化する硝化処理方法であって、硝化槽へ無機炭素として二酸化炭素ガスを気体状態で供給する方法である。 (もっと読む)


【課題】微量のアンモニア性窒素等の有害成分を効率よく処理できる水処理方法および水処理装置を提供する。
【解決手段】ろ過機能を有する上部ろ材部54近傍に水中ポンプ型マイクロナノバブル発生機65を配置して、上部ろ材部54で処理した水と、水中ポンプ型マイクロナノバブル発生機65で発生させたマイクロナノバブルを含有する水とを混合して、淡水魚6の飼育のための上部展示水槽2に供給する。 (もっと読む)


【課題】重炭酸塩が廃水内に存在するアンモニウムイオンのカウンタイオンであるアンモニアを含む排水を処理する方法を提供する。
【解決手段】アンモニウムの半分はニトリットに変換されてアンモニアおよびニトリットを含む溶液が作られ、第2の工程ではニトリットがアンモニアの酸化体として使用される。本発明による方法では、アンモニアの半分のニトリットへの変換は自動的に行われ、殆ど制御の必要のない方法が提供される。また本発明による方法では外部からの添加剤が不要である。 (もっと読む)


【課題】地下水に含まれる硝酸態窒素を低コストでかつ効率よく除去する。
【解決手段】水源用浄化枡1aは、脱窒作用を有しかつ透水性及び通気性を有する水質浄化材を中実に形成するとともに該水質浄化材に揚水管又は排水管を貫入した構成。水源用浄化枡1aは、脱窒作用を有しかつ透水性を有する水質浄化材で製造すればよいが、具体的には、石灰と、硫黄及び硫黄酸化細菌とを混合する、セメントを含むアルカリ性排泥が該セメントの固化作用によって固化した排泥固化体と、硫黄及び硫黄酸化細菌とを混合する、水硬性材料であるセメントを含むアルカリ性排泥と、硫黄及び硫黄酸化細菌とを、アルカリ性排泥の固化前に混合するといった方法で製造する。 (もっと読む)


産業廃水ストリームを処理するためのシステムおよびプロセスが提供される。システムおよびプロセスは、膜生物反応槽を用いる。膜生物反応槽において、粒状活性炭物質が曝気部内に導入され、膜動作システムの上流において維持される。活性炭の顆粒サイズについては、活性炭が混合液ストリームからスクリーニングまたは他の方法で容易に分離できた後に混合液を水中膜を含む膜動作システムタンク(単数または複数)内に送ることができるように選択され、これにより、炭素顆粒に起因する膜摩耗が回避される。曝気部は、廃棄物排出ポートを含む。廃棄物排出ポートにおいて、化学的酸素要求量化合物の廃水濃度が上限(これは、典型的には政府機関によって設定される)に近づいた場合に、使用済の粒状活性炭の一部を除去し、吸着能力がより高い新規のまたは再生された粒状活性炭の付加により、粒状活性炭を交換する。 (もっと読む)


【課題】地下水に含まれる硝酸態窒素を低コストでかつ効率よく除去する。
【解決手段】水質浄化構造1は、地盤2内の透水層3に地中連続壁状の水質浄化体4を埋設し、水質浄化体4の内部通気空間と大気とが連通するように所定の窒素ガス排出管6を前記地盤内に埋設してなる。ここで、透水層3は非透水層5の上層に分布しており、該透水層内を地下水が流れているが、水質浄化体4は、かかる地下水流と直交するように地盤2内に鉛直に埋設してあるとともに、その下端を非透水層5内まで延設してある。水質浄化体4は、水硬性材料であるセメントを含むアルカリ性排泥、硫黄及び硫黄酸化細菌を、アルカリ性排泥の固化前に混合して構成してある。 (もっと読む)


【課題】脂肪酸を添加することにより汚水の脱窒化を図るにあたり、使用する脂肪酸量を削減する。
【解決手段】BODが10mg/リットル未満で且つDOが2mg/リットル以上の水を処理槽での被処理水として、この被処理水に含まれる少なくとも富栄養化成分を除去する方法である。処理槽の被処理水に自然由来の有機質分である汚泥のほかステアリン酸等の高級脂肪酸を添加する。脂肪酸に加えて汚泥を添加することで、被処理水の嫌気性化を促進するとともに、高級脂肪酸と水の界面に生物膜を形成して酸素の乏しい嫌気性条件を生物膜内につくる。もって、汚泥に含まれるリンにより脱窒菌の培養を促進・活性化させることで、被処理水に含まれる硝酸態窒素の除去を行う。 (もっと読む)


【課題】低コストで施工可能で、栄養塩類の溶出を防止する能力に優れた底泥改質方法および底泥改質用資材を提供すること。
【解決手段】本発明の底泥改質方法においては、浄水場から排出される浄水ケーキを粉砕してなる粒径7〜30mmの粒状浄水ケーキおよび粒径7mm以下の粉状浄水ケーキの内、いずれか一方または両方の混合物を主成分とする底泥改質資材を覆砂材として使用し、閉鎖性水域または干潟を対象域として、対象域の底泥表面を覆砂材で被覆する。あるいは、上記底泥改質資材を改質材として使用し、上記対象域の底泥と改質材とを混合することにより、対象域の底泥を改質する。 (もっと読む)


【課題】高濃度の亜硝酸が蓄積することにより嫌気性アンモニア酸化細菌が失活するのを防止することができるアンモニア含有廃水の処理装置及び処理方法を提供する。
【解決手段】アンモニア含有廃水中のアンモニアの一部を亜硝酸に硝化処理した一次処理水を、アンモニアと亜硝酸とを基質とする嫌気性アンモニア酸化細菌が充填された嫌気性アンモニア酸化槽14で処理するアンモニア含有廃水の処理装置10において、一次処理水が嫌気性アンモニア酸化槽14に流入する流入ライン20と、流入ライン20に、一次処理水に含まれる亜硝酸濃度に応じて一次処理水を希釈する希釈水を合流させる希釈ライン26と、を備える。 (もっと読む)


【課題】嫌気性アンモニア酸化細菌を無駄なく回収できると共に、短時間で効率よく嫌気性アンモニア酸化細菌の培養を行う。
【解決手段】
嫌気性アンモニア酸化細菌の培養及び回収を行う培養装置10であって、アンモニアと亜硝酸とを含む原水を導入する導入口を備え、該導入した原水と接触させることにより嫌気性アンモニア酸化細菌を培養する培養槽14と、培養槽14から流出する処理水を貯留する貯留槽16と、処理水中に残留する嫌気性アンモニア酸化細菌を分離回収する膜分離装置18と、処理水中に原水を導入する原水導入配管24と、貯留槽16と膜分離装置18とを連通し、原水を混合した処理水を貯留槽16と膜分離装置18との間において循環させる循環配管26と、を備えた。 (もっと読む)


【課題】下水など窒素化合物を含む有機性排水を処理する深槽曝気槽に添加された硝化担体が、槽壁隅側などに堆積せず槽内全体を循環するようにできる硝化担体の循環方法を提供する。
【解決手段】槽中央に被処理水の流下方向に沿って垂直に設置されたバッフル板2の片側の中段付近に散気装置3を配置する。バッフル板に平行な槽壁側から0.2m〜2mの散気装置3の一部を含む位置に、上端が散気装置の0.5m上方からバッフル板上端までに位置し、下端が槽底面から0.5〜2mに位置する垂直な仕切り板4を槽壁と平行に設ける。これにより、仕切り板4と槽壁の間に整流された上昇流を生じさせ、槽内に添加された硝化担体をこの上昇流に乗せて循環させる。 (もっと読む)


【課題】生物脱臭効果を長期にわたり良好に維持することができる生物脱臭システムを提供する。
【解決手段】生物脱臭システムは、システム内を水が循環する水循環路1と、臭気ガスに含まれるアンモニアを硝化処理する微生物を担持する第1担体21を備える脱臭槽2と、脱臭槽2で発生した処理水を脱窒処理する微生物を担持する第2担体31を備える脱窒槽3と、脱窒槽3に供給される前の処理水、および/または、脱窒槽3に供給された処理水に、脱窒処理を促進させる有機物を供給する有機物供給部4と、脱窒槽3から排出された処理水に含まれている有機物を分解する微生物を担持する第3担体51を備える有機物除去槽5と、有機物除去槽5で処理された後の処理水を脱臭槽2に帰還させる帰還路15とを具備する。 (もっと読む)


【課題】固定担体の充填量が少なくても、高いBOD負荷で処理が可能で、高いBOD容積負荷で運転しても汚泥発生率が低く、さらに処理水の水質悪化を防止することができる活性汚泥装置及び処理方法を提供する。
【解決手段】有機物含有水を処理する活性汚泥装置であって、上流から下流の方向に、直列に配置された、曝気槽1と、生物処理槽2と、沈殿槽3とを備え、前記生物処理槽2が固定担体4と、散気手段7と、両者を分離するバッフル板5とを有し、前記沈殿槽3の汚泥を前記生物処理槽2に返送する返送手段をさらに備える、活性汚泥装置。 (もっと読む)


【課題】難分解性である被処理物質の生分解処理を可能とし、かつ余剰汚泥の発生を低減できる被処理物質の生分解処理方法を提供すること。
【解決手段】好気性細菌および嫌気性細菌を含む汚泥を含んだ水中に、両細菌を凝集させる無機物質を混合することにより粒状の凝集体を調製する。この凝集体を溶存酸素量2mg/L以上の環境下に置くことにより、凝集体の表面側には主として好気性細菌が存在し、凝集体の内部(中心)側には主として嫌気性細菌が存在する粒状体がさらに形成される。その結果、好気性細菌と嫌気性細菌が共存した状態の粒状体が、被処理物質と接触し、被処理物質の生分解処理を行うことができる。 (もっと読む)


【課題】メタン発酵消化液からのアンモニアストリッピングを効率的に行うことができ、かつアンモニアストリッピング装置の容量も抑えることができるバイオガスシステムを提供すること。
【解決手段】バイオマスをメタン発酵槽10に導入して50℃を超える高温でメタン発酵するメタン発酵工程1と、前記メタン発酵槽10から抜き出される消化液から二酸化炭素を除去する調整工程2と、前記調整工程2で二酸化炭素が除去された消化液をアンモニアストリッピング装置30に導入しアンモニアを放散させるアンモニアストリッピング工程3と、前記アンモニアストリッピング工程3でストリッピングしたアンモニアを回収するアンモニア回収工程4と、前記アンモニア回収工程4で回収されたアンモニアを導入して亜硝酸化及び脱窒を行う共脱窒工程5を有することを特徴とする。 (もっと読む)


【課題】化学的に安定な物質を効率的に分解し得るナノバブル含有磁気活水を用いた処理装置および処理方法を提供する。
【解決手段】第1気体に磁場をかける第1磁気活水作製部38と、磁場がかけられた第1気体と液体とを混合して磁気活水を作製する前槽1と、磁気活水と第2気体とを混合およびせん断して、第2気体からなるナノバブルを含有する第1ナノバブル含有磁気活水を作製する第1ナノバブル発生部17と、第1ナノバブル含有磁気活水と微生物とを混合して第1処理水を作製する微生物槽46と、第1処理水と第3気体とを混合およびせん断して、第3気体からなるナノバブルを含有する第2ナノバブル含有磁気活水を作製する第2ナノバブル発生部78と、第2ナノバブル含有磁気活水と活性炭とを接触させて第2処理水を作製する活性炭槽81と、を有する。 (もっと読む)


201 - 220 / 473