説明

Fターム[4F071AF42]の内容

高分子成形体の製造 (85,574) | 性質 (13,194) | 電気、磁気的性質 (961) | 電解性 (131)

Fターム[4F071AF42]に分類される特許

41 - 60 / 131


【課題】製塩に用いられる陰イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させる。
【解決手段】ポリオレフィンからなる多孔性基材の細孔内に、第4級アンモニウム基を導入可能な官能基を有するクロロメチルスチレンおよびジビニルベンゼンを含有する重合性混合物を充填して、熱重合をおこなうことにより得られるポリオレフィンからなる多孔性基材の細孔内に第4級アンモニウム基を有する共重体が充填されている製塩用陰イオン交換膜。 (もっと読む)


架橋スルホン化トリブロック共重合体は、典型的に直接メタノール型燃料電池に使用されるパーフルオロ化プロトン伝導膜に対して、低いメタノール透過性及び優れた物理的強度を示す。燃料電池膜として使用され得るトリブロック共重合体の例は、SEBS、SIBS及びSEPSを含む。化学的に架橋及びスルホン化されたSIBS、SEBS及びSEPSは、非架橋対象物よりも低い膨張率を示し、且つ高いスルホン化度を許容する。これらの共重合体は、周知の手順を使用してスルホン化され、典型的なパーフルオロ化プロトン伝導膜よりも安価で製造することができる。
(もっと読む)


【課題】燃料電池用の電解質膜に要求される種々の特性を改善する。
【解決手段】本発明の固体高分子型燃料電池用の電解質膜は、オレフィン系高分子またはフッ素系高分子によって構成された高分子基材と、陽イオン交換基を有し、かつ高分子基材に付加されたグラフト鎖と、高分子基材に分散された窒化ホウ素または酸化ジルコニウムとを含む。 (もっと読む)


【課題】高いプロトン伝導率を維持しつつ、メタノールクロスオーバーを低減する高分子電解質膜をMEAに用いることで高分子電解質膜と電極との接合性、及び出力特性が良好な膜電極接合体(MEA)を提供する。
【解決手段】プロトン伝導率が0.1S/cm以上で水に対する膨潤率が15%以下の高分子電解質膜を用いる、膜電極接合体。 (もっと読む)


【課題】製塩に用いられる陽イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させ、且つ機械的強度を向上させる。
【解決手段】エチレン−テトラフルオロエチレン共重合体フィルムに電離放射線を照射することにより、エチレン−テトラフルオロエチレン共重合体にラジカルを発生させた後、陽イオン交換基を導入可能な官能基を有する重合性単量体、及び架橋性単量体を含有する重合性混合物中でグラフト重合をおこなうことにより得られた製塩用陽イオン交換膜およびその製造方法。 (もっと読む)


【課題】実用的に十分な発電性能を有し、良好なラジカル耐性を発現する高分子電解質膜、該高分子電解質膜を得ることができる高分子電解質組成物を提供する。
【解決手段】[1]以下の成分(A)及び(B)を含有する高分子電解質組成物。
(A)イオン交換基を有するセグメントとイオン交換基を実質的に有さないセグメントとを有し、共重合様式がブロック共重合又はグラフト共重合である高分子電解質
(B)フェノール類とアルデヒド化合物との縮合物
[2]成分(B)が、分子量500以上の縮合物である、[1]の高分子電解質組成物。
[3]前記高分子電解質組成物からなる燃料電池用部材、及び該燃料電池用部材を備えた燃料電池。 (もっと読む)


【課題】本発明は、親水性ポリマーをベースとするイオン交換膜(IEM)材料特にプロトン交換膜(PEM)材料の製造を対象とする。
【解決手段】重合時に架橋した親水性ポリマーを提供する親水性モノマー及び疎水性モノマー、強イオン性基を含むモノマー及び水から共重合により得られる親水性の架橋したポリマーは電気分解装置及び燃料電池中で使用されうるアセンブリーにおける膜として有用である。より一般には、膜電極アセンブリーは、強イオン性基を含む親水性ポリマーを含むイオン交換膜と電極とを含む。イオン交換膜と電極を含む膜電極アセンブリーを製造するための方法は膜を形成しうる材料を電極間に導入し、そしてその場で膜を形成することを含む。 (もっと読む)


【課題】高分子フィルム又は高分子シートの溶け・ダレを抑制しながら孔開け加工を行うことが出来るので、緻密に貫通細孔を生じさせて多孔質膜を提供し、この多孔質膜を固体高分子電解質膜として用いることによって、出力電圧及び電流密度が向上された燃料電池を提供する。
【解決手段】高分子フィルム又は高分子シートをその融点以下に維持するように冷却しながら、該高分子フィルム又は高分子シートに、パルス幅が10−9秒以下の超短パルスレーザーを照射させ、該高分子フィルム又は高分子シートの厚さ方向に同時に複数の貫通細孔を生じさせた多孔質膜の該貫通細孔に電解質生成モノマーを充填させ、次いで該電解質生成モノマーを重合させて複合高分子電解質膜とする。 (もっと読む)


【課題】水性溶媒にも非水性溶媒中にも高分散しなかったカーボンナノチューブの高分散液を得る。また、フッ素系電解質の代替となり、プロトン伝導性を有し、耐熱性等にも優れるポリベンゾイミダゾール(PBI)の機械的強度を向上させた、プロトン伝導性材料を得るとともに、特に固体高分子型燃料電池に適した固体高分子電解質膜を提供する。
【解決手段】(A)ポリベンズイミダゾール又はポリベンズイミダゾール誘導体、プロトン伝導性基が導入されたポリベンズイミダゾール又はポリベンズイミダゾール誘導体と、(B)カーボンナノチューブ又はプロトン伝導性基が導入されたカーボンナノチューブを含有する分散液。 (もっと読む)


【課題】簡便な方法で、固体高分子電解質膜のイオン伝導性を維持しつつ、クロスオーバーを低減させる。
【解決手段】固体電解質膜に水を湿潤させる工程(S100)と、前記固体高分子電解質膜に水を湿潤させた状態で、当該固体高分子電解質膜をヒートプレスする工程(S102)と、により作製した固体高分子電解質膜を用いて燃料電池を作製する(S104)。 (もっと読む)


【課題】乾燥を効率的かつ効果的に行うことにより固体電解質フィルムの生産性を向上する。
【解決手段】ドープ24をドラム96に流延して流延膜61を形成する。ドラム96により流延膜61を冷却し、ゲル化して固化する。固化した流延膜61を湿潤前駆体フィルム67としてドラム96から剥がす。この後、湿潤前駆体フィルム67を第1テンタ82で乾燥して、液接触装置83に送る。液接触装置83では、接触液106に湿潤前駆体フィルム67を入れて、湿潤前駆体フィルム67に含まれる溶媒を接触液106に置き換える。この湿潤前駆体フィルム67を乾燥工程で乾燥し、固体電解質フィルム78を得る。 (もっと読む)


【課題】高いイオン伝導を維持しながら、燃料電池として使用する際に必要な膜強度、生成水による膜の膨潤を抑えることが可能な高分子電解質膜および燃料電池を提供する。
【解決手段】(A)イオン伝導成分と、(B)非イオン伝導成分から構成されるブロックコポリマーからなる電解質膜において、A成分がシリンダー状或いは共連続状のミクロ相分離構造からなるA相11を、B成分がマトリクス相からなるB相12を形成し、かつA成分の体積分率が、ブロックコポリマー中の50%以上を占める高分子電解質膜およびその高分子電解質膜を有する燃料電池。前記A成分からなるシリンダー構造が、膜面に対して垂直に配向しているのが好ましい。 (もっと読む)


【課題】機械的強度とイオン伝導度とが高い燃料電池用電解質膜を提供すること。
【解決手段】下記化学構造式(I)〜(IV)で示されるモノマーの少なくとも一つを重合することにより得られる樹脂と、下記化学構造式(V)〜(VII)で示される構成単位を全て有する樹脂と、を含有する燃料電池用電解質膜であって、該下記化学構造式(V)〜(VII)で示される構成単位を全て有する樹脂は、電解質膜部よりも、保護部に多く含有されることを特徴とする。
CH2=CHCOOCH2CH2OPO(OH)2 (I)
CH2=CHCOOCH2CH(CH2Cl)OPO(OH)2 (II)
CH2=C(CH3)COOCH2CH2OPO(OH)2 (III)
CH2=C(CH3)COOCH2CH(CH2Cl)OPO(OH)2 (IV)
−CF2CH2− (V)
−CF2CFCl− (VI)
−CH2CH(CH2OCOOR)− (VII) (もっと読む)


【課題】高分子電解質膜を形成する高分子自身に自己保水機能を持たせることによって、大型で複雑な水分管理機構を必要とせずとも、膜中の水分管理、特に起動時の出力不足を補うことが可能なイオン伝導膜、例えば燃料電池用電解質膜を提供する。
【解決手段】イオン伝導性を有する成分からなるセグメント(A)と、外部刺激によって性質(溶解度、形状、或いは体積)が可逆的に変化する成分からなるセグメント(B)を有する高分子の膜からなるイオン伝導膜。前記高分子がセグメント(A)と(B)からなるブロックコポリマー或いはグラフトコポリマーであることが好ましい。 (もっと読む)


【課題】長期に渡って劣化のない陽イオン交換膜、燃料電池用電極触媒層、固体高分子型燃料電池用高分子電解質膜、高分子電解質膜と電極からなる膜/電極接合体、及び、固体高分子型燃料電池を提供する。
【解決手段】本発明は、スルホン酸基を有する高分子化合物を用いた陽イオン交換膜であって、上記陽イオン交換膜は、タリウム化合物を含有する陽イオン交換膜である。 (もっと読む)


【課題】インピーダンスが低くてクロスオーバーが抑制された膜電極接合体と、前記膜電極接合体を用いる燃料電池とを提供すると共に、前記膜電極接合体の製造が容易となる膜電極接合体の製造方法を提供する。
【解決手段】燃料極4と、酸化剤極3と、前記燃料極4及び前記酸化剤極3の間に配置された電解質膜2とを具備する膜電極接合体1であって、前記電解質膜2は、厚さ1μm以下で、厚さ方向に貫通した貫通孔5を有し、かつ前記貫通孔5の孔径の平均値が前記厚さ以下の大きさである無機多孔質膜6と、前記無機多孔質膜6の前記貫通孔5内に充填されたプロトン伝導性電解質7とを含むことを特徴とする。 (もっと読む)


【課題】製塩に用いられる陰イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させ、且つ機械的強度を向上させる。
【解決手段】超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陰イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことにより得られることを特徴とする製塩用陰イオン交換膜。前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用したものであることが好ましい。及びその製造方法。 (もっと読む)


【課題】製塩に用いられる陽イオン交換膜について、従来使用されている膜と比較し、電気抵抗を増加させずに、濃縮性能を向上させ、且つ機械的強度を向上させる。
【解決手段】超高分子量ポリエチレンフィルムに電離放射線を照射することにより、超高分子量ポリエチレンにラジカルを発生させた後、陽イオン交換基を導入可能な官能基を有する重合性単量体単独、又は該重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行うことにより得られたことを特徴とする製塩用陽イオン交換膜。前記単量体単独、又は前記重合性単量体及び架橋性単量体の重合性混合物を用いてグラフト重合を行う際に膨潤溶媒を使用したことが好ましい。その製造方法。 (もっと読む)


【課題】 本発明の目的は、耐熱性、耐溶剤性、機械特性などの面で優れた性質を持つポリベンザゾール系化合物にスルホン酸基やホスホン酸基を導入することにより、加工性、耐溶剤性、耐久安定性だけでなくイオン伝導性にも優れた固体高分子電解質となりうる新規な高分子材料を得ることにある。
【解決手段】 本発明の目的は、スルホン酸基および/またはホスホン酸基を有する芳香族ジカルボン酸結合ユニットを含む特定のポリベンザゾール系化合物、樹脂組成物、樹脂成形物、固体高分子電解質膜、固体高分子電解質膜/電極触媒層の複合体およびその固体高分子電解質膜/電極触媒層の複合体の製造方法によっても達成され得る。 (もっと読む)


【課題】高温低加湿条件下(例えば、運転温度100℃で、50℃加湿(湿度12RH%に相当))でも高耐久性を有する、高分子電解質組成物等を提供する。
【解決手段】イオン交換容量が0.5〜3.0ミリ当量/gの高分子電解質(A成分)とチオエーテル基を有する化合物(B成分)とを含有し、前記A成分と前記B成分の質量比(A/B)が60/40〜99.99/0.01であり、かつ前記B成分を主体とする樹脂(X成分)が島状に分散しており、かつ下記式[1]を満たす高分子電解質組成物。
0(%)≦粒子径が10μm以上のX成分の積算量(体積基準)≦5(%) [1] (もっと読む)


41 - 60 / 131