説明

Fターム[4F201AA17]の内容

Fターム[4F201AA17]に分類される特許

1 - 20 / 21


【課題】粉体フィラーの搬送効率が高く、粉体フィラーの分散性が良好で、物性の良好な樹脂組成物を得る押出機を提供する。
【解決手段】押出機の最も上流に位置する第一混練ゾーン3が、以下の組み合わせのニーディングブロックa〜dを、上流から、少なくとも1個のaとbをこの順で含むユニットを少なくとも2組、a又はdを少なくとも1個、cを少なくとも1個の順で含む。混練ゾーン3の長さはバレル径の6〜15倍である。a.B/D=0.18〜0.6、α=10〜50度、L/D=0.8〜3.3、b.B/D=0.15〜0.6、α=85〜95度、L/D=0.8〜3.3、c.B/D=0.05〜0.25、α=100〜140度、L/D=0.25〜1.5、d.B/D=0.05〜0.17、α=10〜50度、L/D=0.45〜0.75。ただしB、D、α、Lは羽根の厚み、スクリュ径、隣接する2枚の羽根の間のねじれ角度、長さを示す。 (もっと読む)


【課題】繊維状ナノ物質が有する優れたネットワーク形成能を十分に生かすことができ、その充填量に見合った機能の発現を可能とする、繊維状ナノ物質の樹脂粒子粉末との混合方法を提供する。
【解決手段】本発明にかかる繊維状ナノ物質の樹脂粒子粉末との混合方法は、樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を、前記樹脂粒子と同一種類の樹脂からなり前記樹脂粒子よりも微細な混和助成樹脂微粒子の分散共存下、液に分散させた状態で前記樹脂粒子の粉末に混合することを特徴とする。 (もっと読む)


【課題】酸化劣化物の含有量が少ない樹脂組成物の製造方法を提供すること。
【解決手段】(a)不活性ガス供給部1を少なくとも2つ有するストックホッパー5と、(b)不活性ガス供給部1とガス抜き部18−1とを有する重量式フィーダーと、(c)前記ストックホッパー5と前記重量式フィーダー7の間に設けられた制御弁6と、(d)ガス出口先端が下方向に向いており、かつ押出機の供給口のスクリューエレメントの頂上から高さ10cm以内に設けられた、不活性ガス供給部1を備えるトップシュート9と、を備える粉体供給部を少なくとも有する二軸押出機12を用いて、特定の条件下で、粉体樹脂を含む原材料を溶融混練する工程を有する、樹脂組成物の製造方法とすること。 (もっと読む)


【課題】試料等への汚染がほとんど無く、高精密な元素分析に用いるのに好適なフッ素樹脂成形品を製造する方法、その製造方法により製造された分析用樹脂容器、及びそれを用いた元素分析方法を提供することを目的とする。
【解決手段】加圧して焼成することによりフッ素樹脂を成形する成形工程の後、該成形されたフッ素樹脂の表面を溶融する表面溶融工程を有するフッ素樹脂成形品の製造方法、当該製造方法により製造された分析用樹脂容器、及び当該分析用樹脂容器を用いた元素分析方法。 (もっと読む)


【課題】 本願発明の目的は、有機ポリマー若しくは有機プラスチックとカーボンナノチューブを含む複合材料を製造する方法を提供することにある。
【解決手段】 本願発明は、少なくとも1つのポリマーとカーボンナノチューブとに基づいて複合材料を製造する方法であって、(a)連続相、好ましくは液相のカーボンナノチューブの分散若しくは溶解を提供すること、特に連続相、好ましくは液相に、特に分散媒体若しくは分散剤に、分散し若しくは溶解するカーボンナノチューブを提供すること;(b)段階(a)において製造されたカーボンナノチューブの分散若しくは溶解を、特に混合された少なくとも1つのポリマーの溶融物に、均質化、特に混合で、且つ、連続液相の排除によって導入すること;それから、(c)段階(b)で取得された溶融ポリマーとカーボンナノチューブの混合物を、少なくとも1つのポリマーとカーボンナノチューブを含む複合材料を形成するために、前記ポリマーが凝固するまで冷却すること;からなる方法であり、該方法によって製造された複合材料であり、該複合材料の使用である。 (もっと読む)


A)改造表面積(4)を得るために、処理放射(10)で少なくとも表面の一部を照射し、改造表面積は、未改造表面積(5)よりある程度大きく加熱放射(20)を吸収することができ;及び
B)改造表面積(4)の照射セクションで画成される領域において、プラスチック部分(1)が加熱され、そして軟化されるように、少なくともあるセクションに、加熱放射(20)で改造表面積(4)を照射する;
工程を含んでなる、表面を含むプラスチック部分(1)を処理するための方法。 (もっと読む)


【課題】多層構造を持つ成形体を回転成形により製造する場合であっても、気泡が生じにくく平滑性に優れ、高い接着強度を持った成形体を得ることができる成形用原料を提供する。
【解決手段】本発明は、溶融加工可能なフルオロポリマーのマイクロペレットであり、上記マイクロペレットの少なくとも80%以上が200〜800μmの大きさを有し、上記フルオロポリマーは、主鎖炭素数10個あたり80〜500個の接着性官能基を有することを特徴とするマイクロペレットである。 (もっと読む)


【課題】1GHz以上の高周波帯域において、誘電正接の小さいポリテトラフルオロエチレン絶縁体を提供する。
【解決手段】ポリテトラフルオロエチレンを含有する原料に、照射線量100Gy〜3000Gyのγ線を照射する工程を含む製造方法により、ポリテトラフルオロエチレン絶縁体を製造する。当該製造方法では、γ線を照射した原料を、所望の形状に加工してポリテトラフルオロエチレン絶縁体を得る工程が行われることが好ましく、前記ポリテトラフルオロエチレン絶縁体を焼成する工程がさらに行われることがより好ましい。 (もっと読む)


【課題】トレイとラックとの間のマイクロ波による放電を防止する。
【解決手段】ラック(3)は、マイクロ波を照射することによって対象物を乾燥させる乾燥装置に用いられる。ラック(3)は、枠状の金属製枠部材(6)と棒状の金属製柱部材(7)とを備えている。枠部材(6)には金属製のトレイが載置され、柱部材(7)が枠部材(6)を支持する。トレイと枠部材(6)との間にスペーサ部材(10)が設けられてトレイと枠部材(6)との間に間隔が空けられる。 (もっと読む)


【課題】フッ素樹脂多孔体の製造方法として、延伸することで孔をあけていく方法を採用すると、その延伸率を高くしていけば気孔率は高くなっていくが、同時に孔径も大きくなって、濾過性能は小さくなっていく。従って、通常、小孔径で濾過性能が高いものは透過流量が小さく、透過流量を大きくするために、気孔率を大きくしようとすると孔径も大きくなって、濾過性能は小さくなってしまう。このような問題を解消し、処理効率が高く、かつ、濾過性能も高いフッ素樹脂多孔質体を得る。
【解決手段】放射線が照射された四フッ化エチレン樹脂ファインパウダー又は、それを用いた押出成形品であって、その示差走査熱量計分析における熱吸収曲線が、四フッ化エチレン樹脂ファインパウダーが本来持つ347℃吸収ピークと、放射線照射によって現れる335℃の吸収ピークとの両方を持つ四フッ化エチレン樹脂ファインパウダー、或いはその押出成形品。 (もっと読む)


【課題】
カーボンナノチューブを少量添加した場合でも効率よく導電性を発現できる導電性複合材料を提供することを課題とする。
【解決手段】
カーボンナノチューブと熱可塑性樹脂を混練した後、成形した複合材料を熱可塑性樹脂のガラス転移温度よりも20℃低い温度から150℃高い温度で加熱し、この状態において加圧し、樹脂中での複数のカーボンチューブが互いに電気的に接触し、上記樹脂成形体が10Ω/□以下の表面抵抗率を備えている導電性成形品の製造方法。 (もっと読む)


【課題】繊維状強化材をフィードホッパーへ供給するに際し、繊維状強化材がフィードホッパーの内壁へ衝突し解繊物が発生するのを抑制し、フィードホッパー内壁へ解繊物や樹脂成分が付着、蓄積しブリッジ現象を起こしたり、付着物の塊が落下したりすることなく、原料を混練装置へ安定して供給することができる、繊維強化熱可塑性樹脂組成物の製造装置およびその製造方法を提供することにある。
【解決手段】繊維状強化材供給口、熱可塑性樹脂成分供給口および混練装置への材料投入口を備え、さらに、繊維状強化材供給口には、投入された繊維状強化材を混練装置への材料投入口方向に向かってガイドする繊維状強化材供給ガイドを設けてなることを特徴とする、繊維強化熱可塑性樹脂組成物製造用のフィードホッパー。 (もっと読む)


【課題】本発明は、金型内のPTFEファインパウダー間に存在する空気を充分に除去して圧縮することにより、高密度で均一なPTFEファインパウダー予備成形体を製造することができる成形方法を提供する。
【解決手段】本発明は、PTFEファインパウダーを含む粉体を金型に充填する工程と、圧縮する工程とを有する成形方法であって、上記圧縮する工程は、上記粉体が充填された上記金型内を減圧して行うものであることを特徴とする成形方法である。 (もっと読む)


【課題】マイクロ波を利用して対象物を乾燥させる乾燥装置において、乾燥に要する時間の削減を図りつつ、対象物の全てを確実に乾燥させる。
【解決手段】乾燥装置としての前段ユニット(20)では、本体ケーシング(21)内に4つの照射ゾーン(31〜34)が形成される。各照射ゾーン(31〜34)には、トレイユニット(10)が1つずつ収容される。各トレイユニット(10)では、4枚の搬送用トレイ(14)が上下に配列される。各搬送用トレイ(14)には、濡れた状態のPTFE粉末が載せられる。前段ユニット(20)において、トレイユニット(10)は、第1照射ゾーン(31)から第4照射ゾーン(34)へ向かって順に移動してゆく。トレイユニット(10)の各搬送用トレイ(14)に対し、第1照射ゾーン(31)では左側方から、第2照射ゾーン(32)では後方から、第3照射ゾーン(33)では前方から、第4照射ゾーンでは右側方から、それぞれマイクロ波が照射される。 (もっと読む)


【課題】従来のポリテトラフルオロエチレン(PTFE)成形体の製造方法よりも生産性に優れ、得られる成形体の形状の自由度が高いPTFE成形体の製造方法と、PTFE成形体を製造する際に中間生成物として得られるPTFE含有固形物の製造方法とを提供する。
【解決手段】PTFE粒子と、曇点がT1℃である非イオン性界面活性剤と、分散媒である水とを含むPTFE粒子の分散液に機械的な力を加えてPTFE粒子同士を衝突させ、衝突の際に生じる熱により分散液の温度を上昇させるとともに、分散液の温度にして(T1−30)℃以上の温度域においてPTFE粒子同士を結着させて、水および界面活性剤を内包する固形物を得る方法とする。このような製造方法は、例えば、図1に示すチャンバー(1)により実施できる。 (もっと読む)


成形品に使用した場合、改善された表面抵抗率および/または衝撃強さが得られる導電性長繊維複合材である。この複合材は、熱可塑性樹脂、炭素長繊維、およびガラス長繊維を含み、前記炭素長繊維および前記ガラス長繊維が、約2mmを超えるかまたはそれと等しい長さを有し、前記導電性長繊維複合材が、製品に成形した場合、約108Ω/cm2未満またはそれと等しい表面抵抗率、および約10kJ/m2を超えるかまたはそれと等しいノッチ付アイゾッド衝撃強さを示す。 (もっと読む)


少なくともジエンエラストマー、シリカのような補強用無機充填剤、無機充填剤/エラストマーカップリング剤、および0.05〜2.0 phr量の極めて少量のカーボンブラックをベースとするゴム組成物を含むタイヤトレッド。そのようなトレッドを含むタイヤは、トレッドの光酸化処理後、湿潤地面上での有意に改良されたグリップ性を有する。そのような光酸化処理は、とりわけ可視UV線下において、未硬化状態または加硫後のトレッドまたはタイヤ自体の製造中に、或いはタイヤの寿命中の後の時点においてさえも、有利に実施し得る。 (もっと読む)


【課題】簡易な方法で、樹脂の粉末を含むペーストの分級を精度良く行い、膜の均一性が良好な延伸多孔質膜を得ることができる延伸多孔質膜の製造方法を提供する。
【解決手段】樹脂を含んでなる延伸多孔質膜の製造方法であって、樹脂の粉末を含むペーストをふるい網上で音波により振動させて分級する工程と、分級された粉末を押し出し成形後、延伸して延伸多孔質膜を形成する工程と、を含む延伸多孔質膜の製造方法である。 (もっと読む)


【課題】耐薬品性と熱可塑的加工性とを組合せもつエラストマー組成物、またはゴム組成物の提供。
【解決手段】加工性ゴム組成物は加硫フルオロカーボンエラストマーと摩耗低減性添加剤とを熱可塑性ポリマー材料の母材中に分散して含有する。一実施態様では母材は連続相を形成し、加硫エラストマー材料は非連続相を形成する粒子状である。硬化剤、未硬化フルオロカーボンエラストマー、摩耗低減性添加剤および熱可塑性材料を混合し、エラストマー材料の加硫を行うのに充分な温度で充分な時間加熱し、その間機械エネルギーを混合物に加えて加熱工程中混合する。成形物品、例えばシール、ガスケット、O−リング、ホースは従来の熱可塑方法、例えばブロー成形、射出成形、押出しで容易に形成できる。 (もっと読む)


1枚以上のPTFEフィルムが、20時間を超える時間、摂氏150度(℃)を超える温度に加熱され、次に、PTFEフィルムが冷却される。PTFEフィルムは、200℃を超えて250℃未満の温度に、最も好ましくは約228℃の温度に加熱してもよい。PTFEフィルムは、50時間を超える間か、または最も好ましくは約100時間、一定の温度に維持してもよい。PTFEフィルムは、熱処理可能なPTFEフルオロポリマーフィルムであってもよく、また多数の熱影響部を有してもよい。熱影響部は、熱処理の前後に作られてもよい。一般に熱影響部は、通常は圧力下で2枚以上のPTFEフィルムを一緒に溶接することによって、もたらされる。被熱処理ポリテトラフルオロエチレン(PTFE)フルオロポリマーが熱処理されるべき「最適」温度および「最適」期間が決定される。
(もっと読む)


1 - 20 / 21