説明

Fターム[4G035AB04]の内容

溶解、混合、フローミキサー (10,634) | 混合される相に従う混合 (3,669) | 気体と液体 (2,105)

Fターム[4G035AB04]の下位に属するFターム

Fターム[4G035AB04]に分類される特許

41 - 60 / 254


【課題】排気ガス中の有毒物質と煙・粉塵を速やかに霧の中に混入させ、排気ガスの熱量を低下させ、排気ガスと霧を十分接触させることによって、理想的な排気ガス浄化効果を得る。
【解決手段】回転可能なスプレーパイプ7や、スプレーパイプ7上に固定設置されるシャフトスリーブ6およびシャフトスリーブ6の前・後に設置される吸気ブレード4と霧化ネット3を含み、スプレーパイプ7の側壁にはシャフトスリーブ6と相対するスプレーホール10が開いており、シャフトスリーブ6の側壁には複数本の斜めの噴霧溝5が開いており、前記吸気ブレード4の末端は湾曲されており、その湾曲方向と吸気ブレード4の傾斜方向は一致しており、吸気ブレード4の末端の湾曲の所と霧化ネット3のエッジ部分が接続されることによってストッププレート1が形成される排気ガス排出管に作用する高速遠心霧化攪拌ネット。 (もっと読む)


【課題】微細バブルを含むとともに気体の溶解した液体(バブル含有気体溶存液)をより効率的に生成することのできるバブル含有液生成装置を提供することである。
【解決手段】液中に気体が混在する気体含有液を生成する気体含有液生成機構12、13と、前記気体含有液を加圧して液中に気体の溶解した状態の気体溶存液を生成する気体溶存液生成機構15と、前記気体溶存液中に微細バブルを発生させてバブル含有気体溶存液を生成する第1バブル発生機構20とを有する構成となる。 (もっと読む)


【課題】効率的に気体を供給しつつ微細バブル含有液体を生成することが可能な微細バブル含有液体生成装置を提供することである。
【解決手段】
貯液槽からの液体に気体を供給する気体供給機構を有し、気体の供給された液体内に微細バブルを発生させて微細バブル含有液体を生成し、該微細バブル含有液体を前記貯液槽に戻すようにしたバブル含有液体生成装置であって、所定タイミングから第1の流量にて前記気体を前記液体に供給するように前記気体供給機構を制御する第1制御手段(20:S12)と、前記液体に供給される気体の量が所定量に達したか否かを判定する判定手段(20:S13)と、前記液体に供給される気体の量が所定量に達したと判定されたときに、前記第1の流量よりも少ない第2の流量にて前記気体を前記液体に供給するように前記気体供給機構を制御する第2制御手段(20:S15)とを有する構成となる。 (もっと読む)


【課題】 気泡微細化に有利な高速流を大流量にて効果的に発生でき、ひいては気泡の微細化効果を劇的に向上させるとともに、マイクロバブル領域あるいはナノバブル領域の気泡の発生量を、従来達成し得なかったレベルにまで高めることができる気泡微小化ノズルを提供する。
【解決手段】 流れ方向下流側に下り勾配にて形成される流れガイド面22Gと、流れ方向上流側にて流路FP内面に対し流れガイド面22Gよりも急峻に立ち上がるように形成される流れ受け面22Aとを有する絞りギャップ材22Qを流路FP内に配置する。それら流れ受け面22Aと流れガイド面22Gとの交差位置に、流路FPの軸断面内周縁上の第一位置PPから該第一位置PPと異なる第二位置PSに向けて軸断面を横切るエッジ部22Eが形成され、該エッジ部22Eと流路FPの内面との間に絞りギャップ21Gがされる。 (もっと読む)


【課題】RO膜ろ過処理で排水される濃縮水や生物処理の余剰汚泥処理において、付加的な動力を要することなく濃縮水の有機物成分や汚泥を分解除去可能な経済的な膜処理設備を提供する。
【解決手段】原水を加圧して逆浸透膜処理装置に送水するポンプと、逆浸透膜処理装置でろ過された処理水が配水される処理水流路と、逆浸透膜処理装置からの被分離物質を含む濃縮水が排水される濃縮水流路と、濃縮水にオゾンガスを混合するガス混合器と、オゾンガスが混合した濃縮水を導入して濃縮水にオゾンを溶解する溶解水槽と、溶解水槽から出た濃縮水を減圧発泡させてオゾンマイクロバブルを生成するノズルと、ノズルから濃縮水を導入して水処理を行う反応槽から構成される膜処理設備において、ノズルの開口面積を制御して,溶解水槽内の圧力を、ガス混合器の上流側濃縮水流路の圧力と、反応槽内圧力の間に維持する。 (もっと読む)


【課題】気体が加圧下で溶解している液体中に生成させる微細気泡の生成量を調整可能な微細気泡生成ノズルを容易に製造することができる微細気泡生成ノズルの製造方法を提供すること。
【解決手段】気体が加圧下で溶解した液体2の流路3が内部に形成され、その流路の入口6側を形成する流入部7と、出口8側を形成する吐出部9とを備え、これらの流入部と吐出部の間に、流路において最も小さい流路断面積を有する気泡生成部5が設けられ、この気泡生成部の内周面11において液体が接触する部分に、液体の接触角が、液体の既知の流速に応じて設定された表面処理部12を形成する。 (もっと読む)


【課題】気体が加圧下で溶解している液体中に生成させる微細気泡の生成量を容易に調整可能とし、しかも、それを低コストで実現することのできる微細気泡生成ノズルを提供すること。
【解決手段】微細気泡生成ノズル1は、気体が加圧下で溶解した液体2の流路3が内部に形成され、その流路の入口6側を形成する流入部7と、出口8側を形成する吐出部9とを備え、これらの流入部と吐出部の間に、流路において最も小さい流路断面積を有する気泡生成部5が設けられ、この気泡生成部では、その内周面11において液体が接触する部分に、撥水性を有する撥水処理部12が形成されている。 (もっと読む)


【課題】浴槽での入浴とシャワー浴で要求される微細気泡含有水の異なる流量に対し、同一の装置で両方の流量に対応することができ、低価格化を図ることのできる微細気泡発生装置を提供すること。
【解決手段】貯水タンク16を備え、第3の給水管17が、第2の給水管8の途中において分岐して設けられ、その分岐部に第1の流路切替弁18が設けられ、第3の給水管の末端に、第2の減圧部20が内蔵されたシャワーヘッド19が設けられ、第1の戻し管21が、第3の給水管の途中において分岐して設けられ、その分岐部に流量比調整機構22が設けられ、第1の戻し管の末端が貯水タンクに接続され、第2の戻し管23が、その一端を貯水タンクに接続して設けられ、他端が、第1の給水管6の途中において吸気部10の上流側に接続され、その接続部に第2の流路切替弁24が設けられている。 (もっと読む)


【課題】減圧ノズルを用いて気体を微細気泡化し溶解させる水処理装置において、濁質に由来する前記減圧ノズルの目詰まりを防止し、長期間安定した運転を実現する。
【解決手段】気体を混入した被処理水を加圧する加圧手段と、前記加圧手段により加圧された被処理水を減圧する減圧ノズルと、前記減圧ノズルから噴射された前記被処理水が注入される反応槽と、前記加圧手段と減圧ノズル間に挿入した三方弁を備え、前記三方弁は、加圧手段により加圧された被処理水を減圧ノズルに連通させる経路と、減圧ノズルから逆流する被処理水を排水する経路とを切り替える弁である。 (もっと読む)


【課題】構造が簡易で小型化が容易であり、また、安価に製造できる微細化混合装置を提供すること。
【解決手段】微細化混合装置1は、流路20を形成する流路管2内に振動オリフィス部材3を備える。振動オリフィス部材3はシールリング4と振動オリフィス板5で形成され、互いに螺合する入口管21と出口管22との間に挟持されて固定される。振動オリフィス板5はステンレス製の円盤からなり、同心の円形の貫通孔51と、貫通孔51に連なる放射状のスリット52,52,・・・を備える。空気と水が予め混合された混合流体が、流路管2の入口管21の入口開口21aから流入し、振動オリフィス部材3の振動オリフィス板5の貫通孔51を通過する際に急縮作用と振動作用を受け、空気が微細化して直径10nm〜数10μmのマイクロナノバブルが生成される。 (もっと読む)


【課題】微細バブル含有液が供給される機器側の要因で、気体溶存液の圧力開放によってその微細バブル含有液を生成して供給するバブル発生器からの当該微細バブル含有液の出力圧が変動しても、安定した微細バブルの発生に基づいた微細バブル含有液の供給が可能となる微細バブル含有液供給装置を提供することである。
【解決手段】バブル発生器20の下流側で該バブル発生器20からの微細バブル含有液の出力圧を下流側圧力として検出する下流側圧力検出手段21bと、該下流側圧力検出手段21bにて得られる下流側圧力に基づいて、バブル発生器20に入る前記気体溶存液の入力圧が前記下流側圧力に追従して変化するように、バブル発生器20に対する前記加圧状態の気体溶存液の供給流量を制御する制御手段31を有する構成となる。 (もっと読む)



【課題】外気を取り込むことなく、溶存酸素濃度を高めた酸素富化水を生成し、装置の小型化およびコスト低減を図ることのできる酸素富化水生成装置を提供すること。
【解決手段】供給される水wの一部を電気分解する、陰陽2つの電極2を備えるとともに、電気分解により陽極2aで発生する酸素の気泡を水に加圧溶解する加圧溶解部8を備え、加圧溶解部は、電極が設けられた部分または水の通水方向に関し、電極が設けられた部分の下流側に配置されている。 (もっと読む)


【課題】少ない水量であっても量感を感じることができると共に吐水の瞬間流量が大きく変動するような心地よい刺激感も感じることができるシャワー装置を提供すること。
【解決手段】このシャワー装置F1は、絞り部42から空気混入部43に噴射される水流WFを、その噴射方向と交わる方向に振動させることで空気混入部43に取り込まれる空気量を周期的に変動させ、散水部44から吐出する気泡混入水の瞬間流量を変動させることで脈動吐水を行わせるように構成されている。 (もっと読む)


【課題】バブル含有液に含まれるバブルのサイズを変えることのできるバブル含有液生成装置とその装置を用いた処理装置を提供することである。
【解決手段】バブル含有液生成装置は、気体溶存液を生成する気体溶存液生成機構(11、13、14、15)と、該気体溶存液生成機構により生成された気体溶存液と気体とを混合して霧状の液体を噴出する二流体ノズル16と、該二流体ノズル16に供給すべき前記気体の流量を制御する気体流量制御手段(18、19、27、25)とを有する構成となる。 (もっと読む)


【課題】 マイクロ・ナノバブルMnbによる細胞操作効果向上を課題とする。
【解決手段】 窒素(N2)、酸素(O2)、二酸化炭素(CO2)等の純度90%以上の単一気体の単独成分ガスを包含したMnbを混合した「Pタイプ」Mnbと、窒素(N2)、酸素(O2)、二酸化炭素(CO2)等を混合して成分調整したガスを包含した「Cタイプ」Mnbとを混合した「P/C混合タイプ」のMnbで細胞操作の効果を向上させた。包含ガスはこれらに限らず、アルゴン(Ar)など対象細胞の自然生育環境に存在する気体種、および/または、一酸化窒素(NO)や一酸化炭素(CO)など対象細胞中の生体反応に寄与する気体種であってもよい。 (もっと読む)


【課題】長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能な飽和ガス含有ナノバブル水の製造方法及飽和ガス含有ナノバブル水の製造装置を提供する。
【解決手段】飽和ガス含有ナノバブル水の製造方法は、純水を脱気して脱気純水を生成する脱気工程Aと、脱気純水に加圧ガスを溶解してガス飽和の飽和ガス溶解純水を生成するガス溶解工程Bと、ガス溶解工程Bを経たガス飽和溶解純水の、圧力を減圧して飽和ガス含有ナノバブル水を生成するナノバブル発生工程Dと、を含み、ガス溶解工程Bにおいて溶解ガスの圧力を制御し、ナノバブル発生工程Dの前にガス溶解純水の比抵抗を減少させる。 (もっと読む)


【課題】 内部に微細気泡を保持した機能性ゲルを提供する。
【解決手段】 配管3のバルブを開、配管5のバルブを閉、排気管6のバルブを開とした状態で、圧気源2から密閉容器1の底部に所定の高圧ガスを送り込み、密閉容器1の上部の気相領域内のガスを追い出し、気相領域内が所定のガスで充填し、次いで、排気管6のバルブを閉とし、気相領域内を高圧とする。気相領域内が高圧となるとガスの溶解度も上昇し多量のガスが水中に溶解する。この後、配管5のバルブを開とし、容器4内に予め満たしておいた水中に前記所定のガスが高圧での飽和濃度まで溶解している高圧水を供給する。すると、供給された高圧水は容器4内の水中で圧力解放され溶存ガスが微細な気泡として発生する。この後、容器4内にゲル化剤を添加し、微細気泡が含まれる水(低粘性の溶液)をゲル化する。 (もっと読む)


【課題】 気泡の微細化効果が劇的に向上し、気体を加圧溶解して高濃度の気泡を発生させる場合においても、気泡の微細化を十分に達成できる微小気泡発生機構を提供する。
【解決手段】 加圧溶解ユニット310の採用により、絞り部21Jに供給される液体中の溶存気体濃度が加圧溶解により高められ、キャビテーション効果により析出する気泡の数形成密度を大幅に高めることができる。他方、加圧濃縮気体溶解液の場合、気泡が析出した時の周囲の溶存液体濃度が高いため、気泡が急速に成長しやすい傾向になる。そこで、絞り部21を通過した気泡含有液体の一部を、送液経路312から分岐形成された帰還経路300により、絞り部21J又は絞り部21よりも上流側に帰還させる。十分微細化できなかった気泡も絞り部21に帰還することでその再粉砕が可能となる。その結果、加圧溶解特有の高濃度の気泡を均一に微細化することができ、微小で長寿命の気泡を極めて効率よく大量に発生させることができる。 (もっと読む)


【課題】 気泡微細化に有利な高速流を効果的に発生させることができる微小気泡発生機構を提供する。
【解決手段】 準備拡大部156との接続側端部にて該準備拡大部156よりも小断面積となり絞り部21Jよりも大断面積となる流れ導入部150を形成する。準備拡大部156の上流側端部において流れ導入部150の接続開口周囲には流速の小さい淀み領域が流れバッファ空間155として形成される。流れ導入部150から準備拡大部156内に直進する主流れの外周部は該流れバッファ空間155で広がりながら主流れと逆向きに旋回して渦流を発生する。すなわち、上記流れバッファ空間155では主流れの周囲を取り囲むように渦流が発生することで流路FP壁面との摩擦による主流れの圧力損失が軽減され、準備拡大部156内部での液体流を高速に維持することができるようになる。 (もっと読む)


41 - 60 / 254