説明

Fターム[4G047CA05]の内容

重金属無機化合物 (11,210) | 構成元素(チタン化合物) (1,788) | 構成元素が特定されたもの (1,737) | Sを含まず、Ti以外の金属を含むもの (813)

Fターム[4G047CA05]の下位に属するFターム

Fターム[4G047CA05]に分類される特許

1 - 20 / 223


【課題】本発明は、高屈折率を維持しながら、耐光性を大幅に向上し、光学材料などに適用可能な複合酸化物、及び、それを用いた光学材料(光学レンズなど)を提供する。
【解決手段】BET換算粒径が100nm以下である、チタン、並びに、アルミニウム、バナジウム、クロム、コバルト、銅、亜鉛、及び、ジルコニウムからなる金属群から選ばれる少なくとも1種の金属の複合酸化物微粒子であって、前記金属群から選ばれる金属を含有する有機金属化合物溶液を少なくとも1種と有機チタン化合物溶液とを酸化性物質の存在下に噴霧し、気相中で燃焼させる工程A、及び、冷却する工程Bを含む燃焼法により製造されることを特徴とする複合酸化物微粒子。 (もっと読む)


【課題】複合体、その製造方法、それを含む負極活物質、それを含む負極及びそれを採用したリチウム二次電池を提供する。
【解決手段】リチウムチタン酸化物及びブロンズ相酸化チタンを含む複合体、それを含む負極活物質、それを含む負極及びそれを具備してセル性能が改善されたリチウム二次電池である。 (もっと読む)


【課題】比較的低温での焼結処理で効率良く固体電解質層を形成することができる組成物を提供すること。
【解決手段】本発明の固体電解質層形成用組成物は、リチウムイオン二次電池の固体電解質層の形成に用いられるものであって、チタン酸ランタンで構成された第1の粒子と、チタン酸リチウムで構成された第2の粒子とを含むことを特徴とする。第1の粒子の平均粒径は、50nm以上300nm以下であるのが好ましい。第2の粒子の平均粒径は、10nm以上50nm以下であるのが好ましい。 (もっと読む)


【課題】微粒子状で形状が制御されたチタン酸ランタン化合物、特に、異方性の高い板状の微粒子としてのチタン酸ランタン化合物を、低温かつ短時間の処理で、容易かつ確実に製造することができる製造方法を提供すること。
【解決手段】本発明のチタン酸ランタン化合物の製造方法では、ランタン化合物とチタン化合物との混合物を、臨界温度以上の温度かつ臨界圧力以上の圧力で、水熱処理することを特徴とする。前記チタン化合物は、チタン錯体化合物であり、当該錯体化合物を構成する配位子がTi原子に直接結合していないカルボキシル基を含むものでないのが好ましい。中でも、チタン化合物としては、ペルオキソグリコール酸チタンアンモニウムを用いるのが好ましい。 (もっと読む)


【課題】電極合材の製造プロセスを簡易化する。
【解決手段】Li、La、Ti及びOを含む原料を準備する、原料準備工程と、前記原料を加熱する熱処理工程と、を有し、前記原料におけるLiとLaとTiとの組成比が、LiO0.5−LaO1.5−TiO系三角組成図において、LiO0.5:LaO1.5:TiO=23:24:53、LiO0.5:LaO1.5:TiO=5:36:59、及びLiO0.5:LaO1.5:TiO=8:28:64を頂点とする三角形の範囲内であることを特徴とする、電極合材の製造方法。 (もっと読む)


【課題】 サイクル寿命が向上された非水電解質電池、該電池に用いられる活物質及びその製造方法、並びに電池パックを提供する。
【解決手段】 実施形態によれば、チタン酸化合物を含み、ピリジンを吸着及び脱離させた後の赤外拡散反射スペクトルにおいて、1580cm−1〜1610cm−1の領域にピークを有し、且つ、下式(I)を満たすことを特徴とする活物質が提供される。
/S≧2.4 (I)
ここにおいて、Sは前記赤外拡散反射スペクトルにおいて、1430cm−1〜1460cm−1の領域に存在するピークの面積であり、Sは前記赤外拡散反射スペクトルにおいて、1520cm−1〜1560cm−1の領域に存在するピークの面積である。 (もっと読む)


【課題】本発明は、例えば、高いLi挿入容量を有し、且つ金属二次電池の充放電効率を向上させる負極材料を提供することを主目的とする。
【解決手段】本発明は、金属二次電池に用いられる負極材料であって、TiHと、上記TiHに接触し、コンバージョン反応を促進可能な金属触媒とを含有することを特徴とする負極材料を提供することにより、上記課題を解決する。 (もっと読む)


【課題】リチウムに対する電位が低い負極活物質を提供する。
【解決手段】擬ブルッカイト構造を有する化合物を含む負極活物質とする。 (もっと読む)


【課題】センサー材料とその製造方法、および、検出方法を提供する。
【解決手段】分子汚染物質を検出するセンサー材料の製造方法は、金属酸化物前駆体の水溶液を準備する工程と、二酸化チタンナノチューブと金属酸化物の水溶液を混合して、混合物を形成する工程と、弱塩基で、混合物のpH値を中性に調整する工程と、混合物を水に分散させて、加熱する工程と、混合物をろ過して、固体部分を残し、酸素の連続流下で、固体部分を焼成して、金属酸化物を担持した二酸化チタンナノチューブを形成する工程とを有している。本発明は、センサー材料およびセンサー材料を用いた検出方法も提供し、分子汚染物質のppm〜pptレベルの濃度を検出する。 (もっと読む)


【課題】優れた光触媒能を有するブルッカイト型酸化チタンの製造方法を提供する。
【解決手段】本発明のブルッカイト型酸化チタンの製造方法は、ヒドロキシカルボン酸チタン錯体を含有する水溶液に尿素を0.5〜8mol/L添加し、反応温度110℃〜220℃、その反応温度における飽和蒸気圧以上の圧力下、2時間以上水熱処理を施す水熱処理工程を有する。前記ヒドロキシカルボン酸チタン錯体としては、ペルオキソチタン酸錯体とヒドロキシカルボン酸を反応させて得られる化合物が好ましい。 (もっと読む)


【課題】光通信、光集積回路基板に利用可能な光路長の温度依存性が小さい材料を提供する。
【解決手段】SrTiOにYAlOを添加した(Sr1−X,Y)(Ti1−X,Al)O複合酸化物材料は、0<X<0.50の範囲において光路長温度係数(OPD、ここでOPD=1/S・dS/dT=CTE + 1/n・dn/dTであって、Sが光路長、CTEが線熱膨張係数、nが屈折率、dn/dTが屈折率の温度係数である)が制御可能であり、特に0.04<X<0.50の範囲においてはその絶対値が6ppm/℃以下と光路長の温度依存性が極めて小さく、光通信用フィルター、光集積回路基板などに利用可能である。 (もっと読む)


【課題】本発明の目的は、均一な細孔径を有し、比表面積、細孔容積が大きい金属酸化物多孔質体、特に結晶性を有する金属酸化物多孔質体を安定的に、しかも細孔径を自由に制御できる製造する方法を提供することにある。
【解決手段】下記工程(a)、(b)及び(c)を含む金属酸化物多孔質体の製造方法。
工程(a):有機ポリマー粒子、有機ポリマー粒子より平均粒径の小さい金属酸化物ナノ粒子及び水系媒体を含有する混合液を調製する。工程(b):前記混合液を乾燥し、有機無機複合体を得る。工程(c):前記有機無機複合体から前記有機ポリマー粒子を除去し、細孔径が細孔壁の金属酸化物の結晶子サイズより大きく、特定の比表面積、空孔率を有する金属酸化物多孔質体を得る。 (もっと読む)


【課題】白金スパッタ電極の代替として低コストで得られ、且つ、電解液と電子のやり取りが容易に行え、電解液耐性、導電性及び触媒能に優れる対極が得られる材料を提供する。
【解決手段】酸化チタン担体の表面に、白金微粒子が担持されてなる白金担持酸化チタン担体であって、前記酸化チタン担体は、平均粒子径が1〜100nmの酸化チタン微粒子からなり、且つ、該酸化チタン担体を構成する酸化チタン微粒子の30%以上が、マグネリ相構造の結晶形態を有し、前記白金微粒子は、平均粒子径が1〜5nmである、白金担持酸化チタン担体。当該白金担持酸化チタン担体は、色素増感太陽電池等の光電変換素子の正極用材料として好適である。 (もっと読む)


【課題】イオン性不純物の分離効率に優れ、濾過膜への負荷及び洗浄水の使用量を低減することができる微粒子の精製方法であって、イオン性不純物の含有量が著しく低減され、且つ、高分散性を有する微粒子を簡便且つ効率よく得ることができる微粒子の精製方法を提供する。
【解決手段】本発明の微粒子の精製方法は、微粒子中に含まれるイオン性不純物を分離除去する微粒子の精製方法であって、微粒子濃度が0.1〜40重量%の微粒子水分散液をクロスフロー方式により膜濾過し、イオン性不純物を透過液と共に分離除去して濃縮された微粒子水分散液を得、該濃縮された微粒子水分散液に水を加えて、微粒子濃度が上記範囲となるように希釈し、再びクロスフロー方式により膜濾過する操作を繰り返す循環膜濾過方式により微粒子を精製すると共に、定期的に濾過膜を逆洗浄することを特徴とする。 (もっと読む)


【課題】反応速度を速くできる酸化チタン粒子を提供する。
【解決手段】酸化チタン粒子10は、アモルファス相1と、多結晶相2と、TiZrOとを備える。アモルファス相1および多結晶相2の各々は、TiOからなる。そして、アモルファス相1は、欠陥を有する。酸化チタン粒子10は、ジルコニアからなる粉砕ボールと、多結晶からなる酸化チタンと、メタノールとを粉砕容器に入れ、粉砕容器を自転および公転させて酸化チタンを粉砕することによって製造される。製造された酸化チタン粒子10の粒径は、約400nmである。酸化チタン粒子10をメチレンブルー水溶液の脱色反応における光触媒として用いた場合、アモルファス相1に含まれる欠陥を介してメンチレンブルー水溶液の還元反応が促進される。そして、酸化チタン粒子10を光触媒として場合ときの脱色反応の反応速度は、従来の酸化チタンに比べ、約132倍になる。 (もっと読む)


【課題】ナノ粒子を酸化チタン基材に付けた高い殺菌効果を発揮できる抗菌性基材の製造方法、並びに抗菌性基材を提供する。
【解決手段】 メソポーラス酸化チタン基材を形成し、それにシングルナノサイズの銀ナノ粒子を坦持して滅菌性を上げる。アークプラズマ蒸着源で銀ナノ粒子を、下方のガラス基板上につけたメソポーラスな酸化チタン粒子からなるメソポーラス酸化チタン基材にシングルサイズのナノ粒子を付けて紫外線で大腸菌に照射することで略100%死滅させることができ (もっと読む)


【課題】熱電変換材料において、熱電変換特性をより高める。
【解決手段】本発明の熱電変換材料は、Ti59及びTi611からなるTi酸化物のほか、WC粒子を含んで構成されている。このTi59及びTi611からなるTi酸化物としては、例えば、一般式TiOx(1.80≦x<1.84)で表されるTi酸化物としてもよい。具体的には、Ti59及びTi611からなるTi酸化物は、Ti59、Ti611のうちいずれか1以上としてもよい。また、Ti59及びTi611を含むTi酸化物が好ましい。 (もっと読む)


【課題】環境負荷を低減しつつ、純度の高いLaTiナノ粒子を生成できるようにしたチタン酸ランタンの製造方法を提供する。
【解決手段】チタン化合物、ランタン化合物及びアルカリ金属水酸化物を純水に混合した原料ゾルを超臨界水で処理する工程、を含む。例えば、前記チタン化合物としては非晶質酸化チタンを用いることができ、前記ランタン化合物としては水酸化ランタンを用いることができ、前記アルカリ金属水酸化物としては水酸化リチウムを用いることができる。なお、前記超臨界水で処理される前の前記原料ゾルのpHは、10以上、12以下であることが好ましい。また、前記水酸化ランタンの平均粒度分布は500nm以下であることが好ましい。さらに、前記超臨界水で処理される前の前記原料ゾル中において、前記チタンに対する前記ランタンのモル比率は1以下であることが好ましい。 (もっと読む)


【課題】チタン酸ランタン粒子の平均粒径をより微細化する。
【解決手段】ランタン水酸化物粒子4とチタン酸化物粒子2とを純水6に懸濁させた懸濁水8であって、懸濁水8に溶存する夾雑アニオンの量が、チタン酸化物粒子2中のチタンに対するモル比で0.3以下に抑えられた懸濁水8を水熱処理することを含むことを特徴とする。 (もっと読む)


【課題】本発明は、熱安定性が高く、電位の低い電池用活物質を提供することを主目的とする。
【解決手段】本発明は、三価の金属元素であるM元素、Ti元素およびO元素を含有し、パイロクロア構造のMTi結晶相を含有することを特徴とする電池用活物質を提供することにより、上記課題を解決する。 (もっと読む)


1 - 20 / 223