説明

Fターム[4G047JA05]の内容

重金属無機化合物 (11,210) | 超電導材料の形状 (539) | 線材、リボン状物 (266)

Fターム[4G047JA05]に分類される特許

201 - 220 / 266


【課題】数km級の長尺のMgB2超電導線材を提供する。
【解決手段】本発明のMgB2超電導線材は、中心のMgB2超電導体と、その外側の第1の金属層と、その外側の第2の金属層と、を有し、第1の金属層と第2の金属層の金属の結晶粒のサイズは、両者の界面に近づくに従って小さくなっている。第1及び第2の金属層の金属の結晶粒のサイズは、金属層の厚さ方向の中央部において、最大となる。 (もっと読む)


【課題】金属管に原材料粉末を充填する際および封止する際に不純物ガスの侵入を減少して、臨界電流値を向上することができる酸化物超電導線体の原材料粉末の充填装置を提供する。
【解決手段】酸化物超電導体の原材料粉末の充填装置100は、粉末供給部110と、粉末充填部120と、封止部140と、気密容器160と、排気部150とを備えている。粉末供給部110は、酸化物超電導体の原材料粉末11を供給する。粉末充填部120は、原材料粉末11を、一方が開口された金属管12に充填する。封止部130は、原材料粉末11が充填された金属管12を封止する。気密容器160は、粉末供給部1120と、粉末充填部120と、封止部140とを内部に配置する。排気部150は、気密容器160の内部から雰囲気ガスを排出する。 (もっと読む)


【課題】交流損失を低減するとともに、超電導特性の低下を防止することのできる酸化物超電導線材の製造方法を提供する。
【解決手段】酸化物超電導線材100の製造方法は、まず、酸化物超電導体110となるべき前駆体粉末を第1の金属管20に充填する工程を実施する。そして、第1の金属管20を構成する金属と異なる金属からなる金属被覆層を第1の金属管20の外表面に形成して、単芯線を得る工程を実施する。そして、単芯線を複数本形成して、複数本の単芯線を第2の金属管120に挿入して、多芯線を得る工程を実施する。そして、多芯線をテープ状に加工する。そして、金属被覆層を酸化して、絶縁体130を得る工程を実施する。そして、多芯線を熱処理して、前駆体粉末を酸化物超電導体110にする工程を実施する。 (もっと読む)


【課題】バインダの熱分解による問題点の解決を図り、交流損失を低減することができる、酸化物超電導線材およびその製造方法を提供する。
【解決手段】この酸化物超電導線材120は、複数の酸化物超電導体117を備える。また、複数の酸化物超電導体117のそれぞれの外周を被覆する、銀または銀合金からなる第1の被覆層110を備える。また、複数の酸化物超電導体117が埋め込まれ、第1の被覆層110の外周を被覆する、銀化合物を含む絶縁層112を備える。また、絶縁層112の外周を被覆する、銀または銀合金からなる第2の被覆層114を備える。絶縁層112によって複数の酸化物超電導体117のそれぞれを確実に分離することができるので、交流損失を低減できる。また絶縁層112は銀化合物を含むものであって、バインダを使用しない。 (もっと読む)


【課題】バインダの熱分解による問題点の解決を図り、交流損失を低減することができる酸化物超電導線材の製造方法を提供する。
【解決手段】この酸化物超電導線材120の製造方法は、セラミックス体112の原料となるバインダとセラミックス粉末とを準備する工程と、バインダとセラミックス粉末とを、押出加工を施すことにより複数の酸化物超電導体117の周囲に被覆する工程とを備える。バインダは無機バインダを含む。無機バインダは熱分解しないので、熱処理を行なうときに酸化物超電導線材120の内部に空隙が生じることがなく、セラミックス体112の密度が低下して不均一になることがないため、交流損失が低減される。セラミックス体112の密度低下がないので、酸化物超電導体117も均一に加工され、臨界電流の低下が起こらない。 (もっと読む)


【課題】 本発明は高い臨界温度を持つ(Bi,Pb)2223系酸化物超電導材料の製造方法を提供する。
【解決手段】 (Bi,Pb)SrCaCu系酸化物超電導材料の製造方法であって、原料を混合する工程と、前記混合された原料を熱処理する少なくとも2回以上の熱処理工程を含み、前記熱処理工程は、(Bi,Pb)2223結晶を形成する第1の熱処理工程と、(Bi,Pb)2223結晶が形成された後に、(Bi,Pb)2223結晶中のSr含有量を増加させる第2の熱処理工程を含み、前記第2の熱処理工程は前記第1の熱処理工程より低い温度で行うことで臨界温度が向上する。 (もっと読む)


【課題】 超電導特性を向上することのできる酸化物超電導線材の製造方法を提供する。
【解決手段】 (Bi,Pb)2223超電導体の前駆体粉末を金属で被覆した形態の線材を伸線する伸線工程と、前記伸線工程後の線材を圧延する圧延工程と、前記圧延工程後の線材を熱処理する熱処理工程とを備え、該前駆体粉末は(Bi,Pb)2223相とBi2212相、(Bi,Pb)2212相を含み、それらの比率がモル比で(Bi,Pb)2223相/((Bi,Pb)2223相+Bi2212相+(Bi,Pb)2212相)≧0.2になるよう構成されていることおよび、前記伸線工程と前記圧延工程との間において、中間熱処理を加えることを特徴とする。 (もっと読む)


【課題】超電導特性を向上させることができる酸化物超電導線材の製造方法を提供する。
【解決手段】酸化物超電導線材の製造方法は、酸化物超電導体となるべき前駆体粉末を準備する工程と、前駆体粉末を金属パイプに充填して、素線を得る工程と、素線を伸線および圧延する工程とを備えている。準備する工程では、液相法により、一次粒子11の平均粒子径が1μm以下であり、一次粒子11が凝集して形成される二次粒子12の平均粒子径が3μm以下である前駆体粉末を準備することを特徴としている。 (もっと読む)


【課題】 酸化物超電導線材内で超電導結晶が高度に配向化された組織と、均一な超電導フィラメント形状を実現し、それによって高い臨界電流値を有する酸化物超電導線材が製造できる方法を提供する。
【解決手段】 本発明は、(Bi,Pb)2223超電導体の前駆体粉末を金属管に充填する工程と、前記前駆体粉末が充填された金属管を塑性加工する工程と、前記塑性加工工程後の線材を熱処理する熱処理工程とを備えた酸化物超電導線材の製造方法であって、該前駆体粉末を板状に圧縮成形した後、板状前駆体粉末を金属管に充填することを特徴とし高臨界電流値化を図る。 (もっと読む)


【課題】
本発明は、実用的な超電導線材とするために必要な、長尺線材化,高Jc化を、同時に達成することのできるMgB2超電導線材の製造方法を提供することにある。
【解決手段】
本発明のMgB2 超電導線材の製造方法は、第1のMg一次粒子とB一次粒子とを混合し、第1のMg一次粒子の表面に、B一次粒子を付着・反応させ、第1のMg一次粒子の表面にMgB4又はMgB7を生成させ、表面にMgB4又はMgB7が生成した第1のMg一次粒子と、表面にMgB4又はMgB7が生成した第1のMg一次粒子より粒子径が大きい第2のMg一次粒子とを混合し、第2のMg一次粒子の表面に、表面にMgB4 又は
MgB7 が生成した第1のMg一次粒子を付着・反応させ、第2のMg一次粒子の表面にMgB2 を生成させることを特徴とする。 (もっと読む)


【課題】不純物ガスの侵入を減少して、臨界電流値を向上するBi2223超電導線材の製造方法を提供する。
【解決手段】Bi2212を主相とし、残部がBi−2223相および非超電導相である粉末状の前駆体11を準備する準備工程と、1000Pa以下の圧力下で金属管12に前駆体11を充填する充填工程と、1000Pa以下の圧力下で前駆体11が充填された金属管12を封止する封止工程とを備えている。充填工程と封止工程との間に、前駆体11が充填された金属管12を1000Pa以下下の圧力で、100℃以上800℃以下の温度で加熱を行なう加熱工程をさらに備えていることが好ましい。 (もっと読む)


本発明は、RE=希土類元素またはイットリウムであるREBaCu型のナノ構造超伝導材料に関し、このナノ構造超伝導材料は、2つの相、即ち、REBaCuの主要マトリックスと、BaZrO、CeO、BaSnO、BaCeO、SrRuO、La1−xMnO(M=Ca、Sr、Ba)、REおよび/またはRECu)の二次相とを備える。二次相は、高密度のナノメートル欠陥を提供し、それにより渦を効果的に固定する能力が増大するようにしてマトリックス内に無作為に分布している。本発明の別の主題は、これら超伝導材料を製造するための方法である。 (もっと読む)


【課題】600℃未満の焼成温度での焼成でも、600℃以上の焼成温度で得られたものと同様かそれ以上の超伝導特性を有する二ホウ化マグネシウム超伝導体の製造方法を提供する。
【解決手段】マグネシウムに対して0.9〜25mol%の銀を添加して混合粉末とし、焼成温度を600℃未満とする二ホウ化マグネシウム超伝導体の製造方法。
【効果】得られた二ホウ化マグネシウム超伝導体は、550℃あるいは500℃での焼成により、臨界温度が36K以上、20K、低磁場での臨界電流密度が2×10A/cm以上の超伝導特性を有する。 (もっと読む)


【課題】 良好な超伝導性と、取扱性などの良好な機械的特性とを保持する、連続した線の姿の2ホウ化マグネシウム(MgB2)に転換される、超伝導材料に用いるホウ素基材を得 る。
【解決手段】 化学的にドーピングされたホウ素のコーテイングはCVDにより炭化ケイ素フアイバに施され、次いでコーテイングされたフアイバはマグネシウム蒸気に曝されて、ドーピングされたホウ素がドーピングされた2ホウ化マグネシウム(MgB2)に変換され 、結果として超伝導性になる。 (もっと読む)


【課題】超電導転移が急峻で臨界温度が110Kよりも高いBi系超電導体、このBi系超電導体を含む超電導線材および超電導機器を提供する。
【解決手段】本Bi系超電導体は、超電導相として(Bi,Pb)2223を含むBi系超電導体であって、(Bi,Pb)2223のc軸に平行な方向に磁場が印加されている状態で測定され50Kで規格化された磁化率が−0.5となる第1の臨界温度T1Cが110.0Kより高く、磁化率が−0.1となる第2の臨界温度T2Cと前記第1の臨界温度T1Cとの差|T2C−T1C|が1.0K以下である。さらに好ましくは、磁化率が−0.001となる第3の臨界温度T3Cと前記第1の臨界温度T1Cとの差|T3C−T1C|が3.0K以下である。 (もっと読む)


【解決手段】超電導線(ワイヤ)は、積み重ねられた関係の1つまたは複数の基板に配置される第1の超電導層と第2の超電導層を含み、第1の超電導層は第1の構成物の高温酸化物超電導体を備え、第2の超電導層は第2の構成物の高温超電導層を備え、第1の構成物と第2の構成物は異なっている。第1の超電導体層は、超電導層の表面に垂直な磁場(H//c)の存在下で強化された臨界電流(Ic(c))を提供すべく選択された高温超電導体構成物を任意的に含む。第2の超電導体層は、超電導層の表面に平行な磁場の存在下で強化された臨界電流(Ic)を提供すべく選択された高温超電導体構成物を任意的に含む。 (もっと読む)


【課題】良好な超伝導臨界電流を有しながら加工性をも向上したMgB超伝導線材とその製造法を提供する。
【解決手段】マグネシウム(Mg)−リチウム(Li)―ボロン(B)合金層と二硼化マグネシウム(MgB)超伝導層とが積層されてなることを特徴とする構成とする。製造方法は、マグネシウム(Mg)−リチウム(Li)合金層と接触する形でボロン(B)層を積層してなる複合体を構成し、これを線状あるいはテープ状に加工した後、マグネシウム(Mg)とボロン(B)の拡散反応温度で熱処理することによって二硼化マグネシウム(MgB2)超伝導層を生成させる。 (もっと読む)


【課題】Bi系超伝導線材のn値の向上方法を提供する。
【解決手段】磁場中でBi系超伝導線材を部分溶融処理するBi系超伝導線材のn値の向上方法であり、磁場中で銀シースBi2212超伝導線材を部分溶融処理するBi系超伝導線材のn値の向上方法とすることができる。磁場中で銀シースBi2212超伝導線材を部分溶融処理し、平板結晶粒のアスペクト比を小さくし、部分溶融処理は、900℃〜950℃の範囲でなされる。 (もっと読む)


【課題】 意図した長さとおり線材を採取できるよう、全体に均一な性能を有する酸化物超電導線材の製造方法を提供することを目的とする。
【解決手段】 (Bi,Pb)2223超電導体の前駆体粉末を金属シース材で被覆した形態の線材を伸線する伸線工程と、伸線工程後の線材を圧延する第一の圧延工程と、第一の圧延工程後の線材を熱処理する第一の熱処理工程と、第一の熱処理工程後に線材を圧延する第二の圧延工程と、第二の圧延工程後に線材を熱処理する第二の熱処理工程を備える酸化物超電導線材の製造方法において、第一の圧延工程と第二の熱処理工程の間に、シース材の外表面において、シース材の欠落箇所を銀を主成分とする材料で塞ぐ工程を備えることを特徴とする酸化物超電導線材の製造方法。 (もっと読む)


【課題】ドープされた2ホウ化マグネシウム粉末及びその製作方法を提供する。
【解決手段】ドープされた2ホウ化マグネシウム粉末(98)を製作する方法を提供する。本方法は、2ホウ化マグネシウム粉末を含む第1相の複数の粒子のうちの少なくとも1つの上に高分子前駆体をコートする工程を含み、該高分子前駆体は第2相を産生させる化学元素を含む。この第2相は、ホウ化物、窒化物、炭化物、酸化物、オキシホウ化物、オキシ窒化物、オキシ炭化物、あるいはこれらの組み合わせのうちの1つまたは幾つかを含む。本方法はさらに、該2ホウ化マグネシウム粉末の複数の粒子の少なくとも1つの上に第2相コーティングを形成する工程を含む。 (もっと読む)


201 - 220 / 266