説明

Fターム[4G048AA03]の内容

重金属無機化合物 (15,216) | 構成元素 (3,341) | 構成元素が特定されたもの (3,280) | 複数金属とO、又は更にHからなるもの (2,177)

Fターム[4G048AA03]の下位に属するFターム

Fターム[4G048AA03]に分類される特許

921 - 932 / 932


【課題】 セリウム酸化物を主成分とする酸化物固溶体粉末であって研摩材として用いることができるものであり、研摩材として用いたときに高い研摩面精度の被研摩面を得ることができるものを提供すること。【解決手段】 酸化セリウムを主成分とする希土類酸化物にカルシウム酸化物が固溶している酸化物固溶体粉末は、これを用いてガラス基板等のガラス材を研摩したときに高い研摩面精度の被研摩面を得ることができるものであり、研摩材として好適である。酸化セリウムを主成分とする希土類酸化物にカルシウム元素を固溶させると、化学研摩力が高くなり、より高い研摩面精度が得られると考えられる。 (もっと読む)


電気化学的電池用の正電極の活性材料として使用するための水酸化ニッケル材料。水酸化ニッケル材料は、水酸化ニッケル材料の性能に悪い影響を与えないで小さな微結晶粒径と大きな容量をもたらす1つ又は1つ以上の変性剤を含む。 (もっと読む)


多孔質複合酸化物を製造する方法が、下記の工程を含んで成る:下記物質の混合物を準備する工程:a)複合酸化物の製造に好適な先駆成分;または、b)複合酸化物粒子の製造に好適な1つまたはそれ以上の先駆成分、および1つまたはそれ以上の金属酸化物粒子;およびc)約7nm〜250nmの気孔寸法を与えるように選択された粒状炭素含有気孔形成材料;ならびに、該混合物を下記のために処理する工程:i)多孔質複合酸化物を形成し(該多孔質複合酸化物において、上記(a)からの2つまたはそれ以上の先駆成分、または、上記(b)からの、1つまたはそれ以上の先駆成分、および金属酸化物粒子中の1つまたはそれ以上の金属が、複合金属酸化物の相に組み込まれ、複合金属酸化物が約1nm〜150nmの粒径を有する);ii)複合酸化物の多孔質構造および組成を実質的に維持する条件下で、気孔形成材料を除去する。該方法は、非耐火性金属酸化物の製造にも使用し得る。

(もっと読む)


臨界電流密度が高く、かつ製造工程において縦割れおよび断線が発生する傾向が低い、超電導線材を提供する。このため、本発明の超電導線材は、酸化物超電導体と、この酸化物超電導体を被覆する被覆金属と、を備える酸化物超電導線材であって、この被覆金属の材料の応力−歪み特性試験における破断点歪み率が30%以上であることを特徴とする。
(もっと読む)


大きさが100nm未満の粒子状のレーザー・マーキング用添加物をプラスティックスに混入することによりレーザーによりプラスティックス材料にマークを付けることができる。YAGレーザーを用いる場合、レーザー・マーキング用添加物としては粒子の大きさが10〜70nmの錫およびアンチモンの混合酸化物の粒子が有用である。さらに金属の粉末を加えてマーキングを行う際のコントラストを改善することができる。 (もっと読む)


核燃料ペレットが、UF6六フッ化ウラン転換法由来の粉末から得られたUO2二酸化ウランを含有する材料を焼結することによって製造される。UF6六フッ化ウラン転換法から直接得られた粉末が、移動する圧縮体及び混合体を含む容器の中に導入され、該容器は、粉末が三つの非平面軸に従って容器の容積内を置換して、前記転換法により直接得られる粉末に比較してより高い密度を有する粒状材料が形成されるまで、移動体の間及び移動体と容器壁の間で圧縮されるように撹拌され、この容器内部での撹拌により直接得られた粒状材料は、燒結を受ける生燃料ペレットを成形するために使用される。好ましくは、前記容器は、処理の際には振動運動の中にセットされる。極めて広範な添加剤を、容器内部での撹拌による処理の前又は最中に、容器の中に導入することができる。 (もっと読む)


一次電池は、1または2以上の金属と5価のビスマスからなる酸化物を含むカソード、アノード、カソードとアノードの間に設置されたセパレータ、およびアルカリ電解質を有する。金属は、アルカリ金属、アルカリ土類金属、遷移金属および/または主族金属である。セパレータは、イオン選択性であり、あるいは可溶性ビスマスイオン種がカソードからアノードに拡散することを実質的に防止することができる。
(もっと読む)


一般式I
Aga−c・eHO I
(式中、aは0.3〜1.9の値であり、QはP、As、Sbおよび/またはBiから選択される1つの元素であり、bは0〜0.3の値であり、MはNb、Ce、W、Mn、Ta、Pd、Pt、Ruおよび/またはRhから選択される1つの金属であり、cは0.001〜0.5の値であり、ただし(a−c)は0.1以上であり、dは一般式Iの酸素以外の元素の原子価および頻度により決定される数であり、eは0〜20の値である)の多金属酸化物およびこれから製造される芳香族炭化水素の部分酸化のためのプレ触媒および触媒が記載される。 (もっと読む)


ナノサイズの金属酸化物固溶体の製造方法を開示する。金属酸化物固溶体は、水および少なくとも2種の水溶性金属化合物を含む反応混合物を200〜700℃で、180〜550barの圧力下で連続的に反応させることによって製造され、ここで、前記反応混合物は合計0.01〜30重量%の量の金属化合物を含み、かつ前記固溶体は1〜1,000nmの結晶子サイズを有する。金属酸化物固溶体は、特に紫外線遮断剤または酸素貯蔵成分として適している。
(もっと読む)


【課題】 新規な有機/無機酸化物多層材料を得る。
【解決手段】 新規な有機/無機酸化物材料は、有機スペーサ層の間に点在する酸化タングステン、酸化モリブデン又は他の金属酸化物の単又は多原子層に基づく。この材料は、好ましくはセルフアセンブリによって調製される。 (もっと読む)


【構成】 一般式CeVO4 で示される正方晶系の構造を有するセリウム・バナジウム酸化物化合物からなることを特徴とする電気伝導材料。一般式CeVO4で示されるCeVO4 酸化物化合物は、同一の結晶構造を有するLnVO4 と異なって、60℃の低温度でも電気伝導度が10-5Scm-1で、実用に値する良好な電気伝導性材料であることを見出した。 (もっと読む)


【課題】 アルカンのアンモ酸化などで、選択率、活性などの性能が良好な触媒を提供する。
【解決手段】 原料化合物を含む水系混合物を、100〜350℃で水熱処理することを特徴とする下記一般式[1]で表される複合金属酸化物の製造方法。
【化1】
Mo1.0aTebSbα-bx(NH4yn [1]
(式中、XはTi,Zr,Nb,Ta,Cr,W,Mn,Fe,Ru,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ag,Zn,In,Sn,Pb,Bi,およびCeの中から選ばれる一種以上の元素を表し、0.01≦a<1.0、0≦b≦α、0≦x<1.0、0.01≦α/(1+a+x)≦0.50、0≦y≦(1+a+x)、nは他の元素の酸化状態により決定される数である。) (もっと読む)


921 - 932 / 932