説明

Fターム[4G048AB01]の内容

重金属無機化合物 (15,216) | 製造及び処理 (3,415) | 製造方法(気相法、固相法等) (2,358)

Fターム[4G048AB01]の下位に属するFターム

Fターム[4G048AB01]に分類される特許

721 - 731 / 731


本発明は、優れた酸素還元特性(酸素還元触媒性能)を有する酸素還元電極を提供することを主な目的とする。 本発明は、下記の発明に係る;(1)一次粒子が凝集してなるデンドライト的構造を有するマンガン酸化物ナノ構造体を製造する方法であって、 不活性ガスと酸素ガスとの混合ガスを雰囲気ガスとし、前記雰囲気ガス中の酸素ガスの割合は質量流量比で0.05%以上0.5%以下であり、 前記雰囲気ガス中において、マンガン酸化物からなるターゲット板にレーザ光を照射することによって、ターゲット板の構成物質を脱離させ、前記ターゲット板にほぼ平行に対向する基板上にその脱離した物質を堆積させることによって、前記デンドライト的構造を有するマンガン酸化物ナノ構造体を得る工程を含む製造方法、及び(2)一次粒子が凝集してなるデンドライト的構造を有する遷移金属酸化物ナノ構造体を含む酸素還元電極。 (もっと読む)


本発明は、式M6yz(式中、M=遷移金属、C=カルコゲン、H=ハロゲン、およびyおよびzは、8.2<y+z<10であるような整数である)により記述される、サブミクロン断面を持つ擬一次元材料に関し、材料は、1000℃を超える温度で一段階方法で合成される。本発明は、また、電子、化学、光学または機械用途におけるこれらの材料の使用に関する。
(もっと読む)


臨界電流密度が高く、かつ製造工程において縦割れおよび断線が発生する傾向が低い、超電導線材を提供する。このため、本発明の超電導線材は、酸化物超電導体と、この酸化物超電導体を被覆する被覆金属と、を備える酸化物超電導線材であって、この被覆金属の材料の応力−歪み特性試験における破断点歪み率が30%以上であることを特徴とする。
(もっと読む)


核燃料ペレットが、UF6六フッ化ウラン転換法由来の粉末から得られたUO2二酸化ウランを含有する材料を焼結することによって製造される。UF6六フッ化ウラン転換法から直接得られた粉末が、移動する圧縮体及び混合体を含む容器の中に導入され、該容器は、粉末が三つの非平面軸に従って容器の容積内を置換して、前記転換法により直接得られる粉末に比較してより高い密度を有する粒状材料が形成されるまで、移動体の間及び移動体と容器壁の間で圧縮されるように撹拌され、この容器内部での撹拌により直接得られた粒状材料は、燒結を受ける生燃料ペレットを成形するために使用される。好ましくは、前記容器は、処理の際には振動運動の中にセットされる。極めて広範な添加剤を、容器内部での撹拌による処理の前又は最中に、容器の中に導入することができる。 (もっと読む)


アンモニア性モリブデン酸水溶液を硫化水素ガスと大気圧よりも高い圧力(superatmospheric pressure)で硫化水素がもはや溶液に吸収されなくなるまで反応させて実質的にそのすべてがテトラチオモリブデン酸アンモニウムである固体からなるスラリーを生成する工程を含み、前記溶液と前記ガスが密閉系にあり、前記ガスの流れが高圧で制限されており、その後反応生成物を高温で元素硫黄の存在下で加熱して所望の生成物を生成する工程を含む式(NH42Mo313・nH2O(式中、nは0、1又は2である。)のポリチオモリブデン酸アンモニウムの製造方法を開示する。 (もっと読む)


本発明は、回転炉または舟形炉(boat furnace)中で還元剤として水素を使用することにより、モリブデン酸アンモニウムまたは三酸化モリブデンを還元することによる高純度なMoO粉末に関する。加圧/焼結、ホットプレスおよび/またはHIPによる粉末の圧密は、スパッタリングターゲットとして使用されるディスク、スラブまたは板を製造するために使用される。MoOのディスク、スラブまたは板の形状物は、適当なスパッタリング方法または他の物理的手段を用いて支持体上にスパッタリングされ、望ましい膜厚を有する薄膜を提供する。薄膜は、透明度、導電率、仕事関数、均一性および表面粗さに関連してインジウム−酸化錫(ITO)および亜鉛がドープされたITOの性質と比較可能かまたは前記性質よりも優れている性質、例えば電気的性質、光学的性質、表面粗さおよび均一性を有する。MoOおよびMoOを含有する薄膜は、有機発光ダイオード(OLED)、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)、薄膜ソーラーセル、低抵抗オーミック接触ならびに他の電子デバイスおよび半導体デバイスに使用されてよい。 (もっと読む)


本発明は、一般式がAg1−xM’Q2+mで示される、熱電気的な物質に関するものである。MはPb,Sn,Ca,Sr,Baなどの2価の遷移金属とそれらの組み合わせのうちから選択されるものであり、M’はBi,Sbとそれらの組み合わせのうちから選択されるものであり、QはSe,Te,Sとそれらの組み合わせから選択されるものである。また、8≦m≦24であり、0.01≦x≦0.7である。発明の実施例では、この複合物はn型半導体の性質を示した。実施例では、xは0.1から0.3であり、mは10から18である。複合物は、Ag,M,M’,Qの原料を化学式通り反応容器に加え、原料を加熱し、充分な時間溶解し、反応物を冷却する速度を調整して冷却することによって合成した。
(もっと読む)


本発明は、高い純度と大きい比表面積と制御された酸素及び窒素の含有量とコンデンサの製造に用いるのに適切な形態とを有する一酸化ニオブ(NbO)粉末の製法であって、第1の段階と第2の段階とを包含する五酸化ニオブ(Nb)の二段階還元であって、第1の段階は、水素によって五酸化ニオブ(Nb)を二酸化ニオブ(NbO)まで還元する工程を含み、第2の段階は、二酸化ニオブ(NbO)からの酸素原子が酸素ゲッター材へ移動するのを可能にする雰囲気の中、一酸化ニオブ(NbO)を形成するのに適した時間と温度との条件の下、該酸素ゲッター材を用いることによって、該二酸化ニオブ(NbO)を該一酸化ニオブ(NbO)まで還元する工程を含む、二段階還元を包含することを特徴とする、上記製法に関する。本方法を用いて生成される一酸化ニオブ(NbO)粉末の粒子は小さくて、大きい表面積と適切な形態とを有し、コンデンサを作るのに適している。 (もっと読む)


高電圧および高容量用途で、高サイクル耐久性および高安全性を備えているリチウム二次電池用正極材料を得る。正極活物質が一般式、LiCoMg(Aは6族遷移元素もしくは14族元素,0.90≦a≦1.10,0.97≦b≦1.00,0.0001≦c≦0.03,0.0001≦d≦0.03,1.98≦e≦2.02,0≦f≦0.02,0.0001≦c+d≦0.03)で表される組成を有する粒子であり、かつ、マグネシウム,元素A、またはさらにフッ素が上記粒子の表面近傍に均一に存在しているリチウム二次電池用正極材料。 (もっと読む)


1500以上の相対誘電率を有する、結晶質のPbMg0.33Nb0.67の単相の層が、大環状錯化剤を有する前駆体溶液の使用によって準備される。この錯化剤は、有機溶液内の鉛成分に付加される。得られる層は、半導体素子及び抵抗器を更に含み得るデバイスの一部である。
(もっと読む)


ドープされたiX−Ba−Cu−O材料を製造する方法であって、この方法は、
a)X−Ba−L−O又はX−Ba−Cu−L−O材料をX−1−Ba−Cu−O材料と混合するステップと、
b)この混合物を結晶化するステップとを含み、
ただし、1各Xは希土類(IIIB族)元素、イットリウム、希土類元素の組み合わせ又はイットリウムと希土類元素との組み合わせから個別に選択され、各LはU、Nb、Ta、Mo、W、Zr、Hf、Ag、Pt、Ru及びSnから選択される、ドープされたiX−Ba−Cu−O材料を製造する方法。本発明はさらに、本発明の方法によって製造されるドープされた材料を提供する。
(もっと読む)


721 - 731 / 731