説明

Fターム[4G072AA20]の内容

珪素及び珪素化合物 (39,499) | 主題 (3,842) | 珪化物 (96)

Fターム[4G072AA20]の下位に属するFターム

Fターム[4G072AA20]に分類される特許

1 - 20 / 73


【課題】 珪素の高い初期効率と電池容量を維持しつつ、サイクル特性に優れ、充放電時の体積変化を減少させた非水電解質二次電池の負極用として有効な活物質としての珪素粒子からなる負極活物質の製造方法を提供する。
【解決手段】 非水電解質を用いる二次電池用の負極活物質の製造方法であって、金属珪素を原料とした電子線蒸着法により、温度を800−1100℃に制御した基板上に、1kg/hrを超える蒸着速度で、蒸着膜厚が2−30mmの範囲で珪素を堆積させる工程と、該堆積させた珪素を粉砕・分級して、前記負極活物質を得る工程とを含むことを特徴とする非水電解質二次電池用負極活物質の製造方法。 (もっと読む)


【課題】従来のブロンズ法に代表される拡散法に替わる、珪化バナジウム及び珪化バナジウム線材の簡便な製造方法を提供する。
【解決手段】酸化バナジウム、珪素及びアルミニウムを含有する原料粉末をテルミット反応に供することを特徴とする、V3+xSi(但し、xは−1.33≦x≦21)で示される珪化バナジウムの製造方法、並びに、当該珪化バナジウムを粉砕した後、金属製パイプに充填して伸線加工することを特徴とする、珪化バナジウム線材の製造方法。 (もっと読む)


【課題】マグネシウムシリサイドとの相性が良好なドーパントを含有する新規な材料を提供する。
【解決手段】マグネシウムシリサイドにドープするドーパントとして、Co、Nb、Nd、Sm、Ta及びZnを用いる。本発明のマグネシウムシリサイドに含まれるドーパントの量は特に限定されないが、上記のドーパントの含有量は、原子量比で0.10〜2.00at%であることが好ましい。また、本発明のマグネシウムシリサイドを焼結してなる焼結体は、熱電変換素子として好ましく用いることができる。 (もっと読む)


【課題】モノシランガスの原料であるシリサイドを安定かつ安価に提供する。
【解決手段】炭素-珪素化合物をマグネシウム含有金属存在下で加熱する。 (もっと読む)


【課題】結晶性が高く、微細であり、しかも不純物量の少ないMg2Si微粒子及びその製造方法を提供すること。
【解決手段】比表面積が30m2/g以上であり、Mg2SiのXRD最強線強度(IMg2Si)に対するSiのXRD最強線強度(ISi)の比(=ISi×100/IMg2Si)が5.0%以下であるMg2Si微粒子。このようなMg2Si微粒子は、Na−Si系化合物及びMgのハロゲン化物、並びに、必要に応じてNaを、Mg/Si比(モル比)が2以下となり、かつ、Na/Si比(モル比)が1以上9以下となるように配合し、配合物を、0.7Tmin以上Tmin未満の温度(但し、Tminは、前記Na−Si系化合物の融点、共晶点、及び分解温度の内の最も低い温度)で加熱し、反応物を溶媒で洗浄し、未反応原料及び副生成物を除去することにより得られる。 (もっと読む)


【課題】MgSi1−xSn系多結晶体であって、性能指数が高い、熱電変換素子および、熱電変換モジュールの提供。
【解決手段】Sb、P、As、Bi、Alから選択される少なくとも1種のドーパントAでドーピングされたMgSi1−xSn中に、Sc、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、Wから選択される少なくとも1種の遷移金属Bの元素および/または遷移金属Bのシリサイドが分散していることを特徴とする下記式(1)で表されるMgSi1−xSn・Aa・Bb多結晶体。MgSi1−xSn・Aa・Bb、式(1)[ただし、式(1)中のxは0〜1、aはMgSi1−xSnに対するドーパントAの含有量であって0.01〜5mol%であり、bはMgSi1−xSnに対する遷移金属Bの含有量であって0.01〜5mol%である。] (もっと読む)


【課題】充放電を繰り返した場合の体積エネルギー密度に優れる非水電解質二次電池用負極合金材料を提供する。
【解決手段】TiFeSi合金相、又は、TiFeSi合金相を含有する合金を用いる。これは、Ti、Fe及びSiを含有し、これらの原子比をTi:Fe:Si=a:b:c(a+b+c=100)としたとき、c≦69である合金を含むものである。組成がTiFeSiである合金よりも、組成がTiFeSiである合金の方が、放電容量、サイクル容量維持率共に優れる結果となった。 (もっと読む)


【課題】水を還元する能力の大きな低下なしに大気中で容易に扱われ得るアルカリ金属シリサイド組成物を提供する。
【解決手段】アルカリ金属とケイ素とを混合する工程、および、生じる混合物を温度約475℃以下に加熱する工程を包含する、アルカリ金属シリサイド組成物の製造方法、およびこの方法により得られる組成物。組成物は乾燥Oと反応しない。約18.2、28.5、29.5、33.7、41.2、47.4、および56.2から選択される2θ角を有する少なくとも三つのピークを含有する粉末X線回折パターンおよび約18ppmにおいて固体状態23Na MAS NMRスペクトルピークを有する。組成物は水と反応して水素ガスを発生させる。 (もっと読む)


【課題】 リチウムイオン2次電池やハイブリットキャパシタなど、充放電時にリチウムイオンの移動を伴う蓄電デバイスの導電性に優れるSi系合金負極材料を提供する。
【解決手段】 Si相とSiとCuとの金属間化合物であるSixCuy合金からなるSixCuy相の複合相からなる粉体であり、かつ、SixCuy相の組成がx<yであり、SixCuy相からなる金属間化合物相の平均硬さが800HV以下であることを特徴とするSi系合金負極材料。 (もっと読む)


【課題】目的とする組成および粒径の無機化合物粒子を容易に得ることができる無機化合物粒子およびその製造方法を提供する。
【解決手段】互いに異なる融点を持つ複数の元素を含む合成物である無機化合物粒子の製造方法。前記複数の元素のうち、前記無機化合物の融点以上の融点を有する元素を含む第一原料粒子と、前記無機化合物の融点未満の融点を有する元素を含む第二原料粒子とを含む原材料を、前記両原料粒子を構成する前記元素の状態図上のII領域(液−固相領域)とI領域(固相領域)の共晶温度以上、かつ前記無機化合物の融点未満の温度で加熱することによって、前記第一原料粒子に第二原料粒子の溶融液を含浸させて、前記第一原料粒子内での前記両元素の合成反応により前記無機化合物粒子を得る。 (もっと読む)


【課題】エタノール中で低摩擦・低摩耗を示し、摺動部材として用いるのに適した低摩擦合金及びその製造方法を提供する。
【解決手段】αFeSi2単相、又は、αFeSi2相とFeSi相あるいはαFeSi2相とSi相の2相、又は、αFeSi2相とFeSi相と Si相の3相から構成され、合金中のFeとSiの原子比が35:65から20:80までの範囲内であり、純度90%以上のエタノール中においてSi3N4からなる部材相手に低摩擦を示すαFeSi2基低摩擦合金であることを特徴とする。 (もっと読む)


【課題】薄膜太陽電池に多元系硫化物薄膜を用いる際に好適な電気伝導性・強度を有する裏面電極材料及びその製造方法を提供する。
【解決手段】ニッケルとシリコンを同時にスパッタ堆積し、これを熱処理することでNiSi薄膜を基材表面に固定化し、この表面に硫化物薄膜を固定化させる。あるいは、ニッケルとシリコンを同時にスパッタ堆積し、さらに硫化化合物となる金属化学種またはこれらの硫化物を堆積し、これを硫黄雰囲気下にて加熱することにより基材表面にNiSiと硫化物の積層薄膜を同時に固定化させる。 (もっと読む)


【課題】高容量且つ充放電サイクル特性に優れるリチウムイオン二次電池が得られるアモルファス合金を提供する。
【解決手段】Si及びAlを含み、さらにFe、Cr、Ni及びZrから選ばれる少なくとも2種の元素を含み、Siの含有量(原子%)及びAlの含有量(原子%)の和が70原子%以上90原子%以下であって、下記式(1)を満たすアモルファス合金。
1<(Siの含有量(原子%))/(Alの含有量(原子%))<3 (1) (もっと読む)


【課題】金属珪化物の正方晶の薄膜を常温下で製造できる方法を提供する。
【解決手段】エアロゾル薄膜堆積法を用い、金属珪化物の微粒子をキャリアガスと混合してエアロゾル化したものを、常温減圧下の雰囲気で、ノズルを通じて所定の速度で基板に噴射し、衝撃固化現象を利用して微粒子を基板上に付着させることによって、金属珪化物の薄膜を製造する。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Mとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた少なくとも1種の元素であり、前記元素MがCu、AgおよびAuからなる群より選ばれた少なくとも1種の元素であり、前記元素Aの単体または固溶体である第1の相と、前記元素Aと前記元素Mとの化合物または前記元素Mの単体もしくは固溶体である第2の相を有し、前記第1の相は、酸素を含み、前記第1の相と前記第2の相とは、界面を介して接合しており、前記第1の相と前記第2の相の両方が、外表面に露出しており、前記第1の相と前記第2の相が、界面以外が球面状の表面を有することを特徴とするナノサイズ粒子と、前記ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Dとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた少なくとも1種の元素であり、前記元素DがFe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、Y、Zr、Nb、Mo、Ru、Rh、Ba、ランタノイド元素(Ce、およびPmを除く)、Hf、Ta、WおよびIrからなる群より選ばれた少なくとも1種の元素であり、前記元素Aの単体または固溶体である第1の相と、前記元素Aと前記元素Dとの化合物である第2の相を少なくとも有することを特徴とするナノサイズ粒子と、前記ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】<1>高容量と良好なサイクル特性を実現する、<2>多孔質体内部でシリコン化合物による導電パスの確保としたリチウムイオン電池用の負極材料に好適な多孔質シリコン複合体粒子を得る。
【解決手段】シリコン微粒子3とシリコン化合物粒子5が接合してなる多孔質シリコン複合体粒子1であって、前記シリコン化合物粒子は、シリコンと、As、Ba、Ca、Ce、Co、Cr、Cu、Er、Fe、Gd、Hf、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pr、Pt、Pu、Re、Rh、Ru、Sc、Sm、Sr、Ta、Te、Th、Ti、Tm、U、V、W、Y、Yb、Zrからなる群より選ばれた一つ以上の複合体元素との化合物を含み、前記多孔質シリコン複合体粒子の平均粒径が、0.1μm〜1000μmであり、多孔質シリコン複合体粒子が、連続した空隙からなる三次元網目構造を有することを特徴とする多孔質シリコン複合体粒子である。 (もっと読む)


【課題】新規な遷移金属シリサイド−Si複合材料及びその製造方法、並びに、このような遷移金属シリサイド−Si複合粉末を製造することが可能な遷移金属シリサイド−Si複合粉末製造用CaSiy系粉末及びその製造方法を提供すること。
【解決手段】1種又は2種以上の遷移金属元素(M)を含み、Si/M比(z)が2.0≦z≦20.0であり、比表面積が2.5m2/g以上である遷移金属シリサイド−Si複合粉末及びその製造方法。Si/Ca比(w)が2.0≦w≦20.0であり、少なくともCaシリサイド相を含む遷移金属シリサイド−Si複合粉末製造用CaSiy系粉末及びその製造方法。 (もっと読む)


【課題】金属とリチウムとの合金化・脱合金化反応を利用したリチウムイオン二次電池用負極材に好適な、高容量で、充放電サイクル性に優れる複合粒子、その製造方法、それを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供すること。
【解決手段】リチウムを電気化学的に吸蔵・放出できる金属粒子Aと、前記金属粒子Aよりも導電性が高く、且つ前記金属粒子Aよりもリチウムの吸蔵・放出能力が低い金属粒子Bと、を用いて得られる複合粒子であり、前記金属粒子Bの重量平均粒子径(D50)は0.2μm以上1.2μm以下であり、粉体電気抵抗が圧力50MPaにおいて1×E1Ω・cm以上1×E8Ω・cm以下の複合粒子である。 (もっと読む)


【課題】保持容器から不純物が混入することを防止することができる保持容器、および保持容器の製造方法を提供する。
【解決手段】金属元素、シリコン元素およびゲルマニウム元素から選択された選択元素を主成分とする溶融物を保持する保持容器であって、溶融液と接触する内面が一体的に形成された保持容器本体4を備え、保持容器本体4は、選択元素を主成分として含み、保持容器本体の選択元素の含有率(質量%)は、溶融物の選択元素の含有率(質量%)以上である。 (もっと読む)


1 - 20 / 73