説明

Fターム[4G075BB05]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理操作−単位操作 (2,902) | 分離、混合 (1,097)

Fターム[4G075BB05]に分類される特許

161 - 180 / 1,097


本発明は、イオン液体を用いてナノスケール粒子を製造する方法に関する。上記方法を用いると、高結晶性粒子を得ることができる。本方法はごく少数の工程を含むものであり、イオン液体は容易に再生することができる。 (もっと読む)


【課題】 水素吸蔵量に優れた水素吸蔵材料を提供すること。
【解決手段】 バナジウムを含む水素吸蔵能を有する金属微粒子に、該金属微粒子と反応することが可能な特性基を1つ有する有機化合物を反応させて得られる、水素吸蔵材料。 (もっと読む)


本発明は、マイクロ流体デバイス中でガス交換するためのシステムおよび方法ならびにそのようなマイクロ流体デバイスを製造する方法を提供する。このシステムおよび方法は、患者における肺機能を補助するため酸素を血液に移送するために使用することができる。 (もっと読む)


【課題】 スラリー状流体、即ち極微粒子を含んだ溶液を送液した場合であっても、その送液中に微小流路内等で極微粒子が沈殿又は凝集する等しない微小流路送液装置を提供すること。
【解決手段】 1以上の流体を導入する1以上の流体導入口、導入口に接続した1以上の微小流路及び微小流路に接続した1以上の流体排出口を有する微小流路構造体と、微小流路構造体に極微粒子を含むスラリー状流体を送液するための送液手段と、微小流路構造体の上流に配置されたスラリーの均一分散手段とからなる、微小流路送液装置により前記課題を解決する。 (もっと読む)


本発明は、複合原材料中に含まれる材料の分離のためのリアクタ(1)に関し、このリアクタは、少なくとも1つの反応チャンバ(2)と、少なくとも1つのロータ(3)とを備え、前記反応チャンバ(2)は、周囲に対して密封されている少なくとも1つのハウジング(6,6a,6b,7)を備え、および少なくとも1つの流入開口部(8)および少なくとも1つの流出開口部(9)を有し、前記ロータ(3)は、少なくとも1つの軸(5)を備えている。前記ロータ(3)の少なくとも第1の部分は、前記ハウジング(6,6a,6b,7)内に位置しており、前記軸(5)は、前記第1の部分から、前記ハウジング(6,6a,6b,7)を通ってそこから出る一方向のみに伸びている。 (もっと読む)


【課題】核酸やタンパク質といった生物学的分子を効率的に回収する。
【解決手段】複数の反応部を有する反応容器を配置することができ、上記反応容器の反応部に対して溶液を分注する分注チップ及び上記反応容器の複数の反応部の間に磁性ビーズを移動させる磁界を発生する磁性チップの着脱が可能なノズルを有するノズル機構と、ノズル機構の駆動を制御する駆動制御装置とを有する。 (もっと読む)


【課題】性能を向上し、生産コストを安くできる蒸留用充填物を提供する。
【解決手段】蒸留法に使用される蒸留用充填物1であって、扁平状の金属製細線11をコイル状にカールして形成した金属コイル状体10を製造し、この金属コイル状体で所望の大きさ、かつ、所望形状の成形物12を形成する。前記成形物で充填物1を構成する。金属製細線11としてステンレス鋼製細線を採用する。成形物12は略円柱形状に形成することが好ましい。 (もっと読む)


【課題】断続的に大きなせん断をかけることができる流路デバイスを提供すること。
【解決手段】円筒と前記円筒内に設置された円柱とにより形成される同心円筒状の流路、前記流路に流体を供給する供給口、前記流路から流体を排出する排出口、並びに、前記円筒及び/又は前記円柱を円柱の軸を中心に相対的に回転させる回転機構を有し、前記円筒と前記円柱との間隙の幅が1〜1,000μmであり、前記流体の流路における平均流速Vlavrと前記流体の円筒軸方向の流速Vfとが式(1)の関係を満たし、かつ、流体の流路における最大流速Vlmaxと前記円筒に対する前記円柱の回転方向の終端速度Vrとが式(2)の関係を満たすことを特徴とする流路デバイス。
100Vf<Vlavr<10,000Vf (1)
0.4Vr≦Vlmax (2) (もっと読む)


【課題】ターゲット材料の種類によらず、液相中に粒子を連続的に安定して製造できる製造効率の十分に高度な液相レーザーアブレーション装置を提供する。
【解決手段】レーザー光Lを発生させるためのレーザー発振器10と、レーザー光を導入するための窓13Aを備え且つ溶媒14を保持するための処理容器13と、処理容器内に配置されるターゲット15と、処理容器から溶媒を流出させるための流出管16と、処理容器に溶媒を流入させるための流入管17と、流出管及び流入管に溶媒を流通させるためのポンプ18と、流出管内の溶媒の流路と流入管内の溶媒の流路とポンプ内の溶媒の流路とからなる循環流路中に配置され且つ循環流路中に流通する溶媒の中からレーザーアブレーションにより形成された粒子を回収するための15〜1000nmの孔径を有するフィルター19とを備える。 (もっと読む)


【課題】簡便な構成でマイクロリアクタに一定量の原料を供給し、かつプライミング時の気泡の残留を抑えることができる化学装置を提供すること。
【解決手段】、種類の異なる複数の原料を反応器に供給し、反応器内部の微細流路で混合あるいは反応させて生成物を得る化学装置で、前記反応器を複数設けるとともに、種類の異なる複数の原料を循環させる複数のループ流路と、前記各ループ流路の途中から前記複数の反応器に前記原料を供給する複数の分岐流路を備え、前記ループ流路は、前記反応器内部の微細流路のスケールに比べ十分に大きなスケールに設定されたことを特徴とする。 (もっと読む)


【課題】液体中に微小気泡を生成して液体を発熱させる装置の提供であって、付加価値として、液体の温度をたかめるという特徴を付加した技術である。
【解決手段】装置の使用状態において、吸引圧力を少なくとも1回、強い吸引状態となす。すなわち、渦流ポンプの定格運転時における吸引低圧に対して110%を超える数値の低圧とする。そのことで、断熱圧縮、大気解放を吸引・吐出で繰り返し循環する微小泡が自ら有する熱力学的エネルギーを解放しやすくする。 (もっと読む)


明細書は、通常マイクロ流体システムにおいて流体を混合し輸送するためのシステムおよび方法を開示する。所定の実施例において、流体は、1つ以上の化学的反応または生体反応に関与することができる試薬を含む。いくつかの実施例は、制御可能に流れ、且つ/またはマイクロ流体システム内の流体の部分を混合するために1つ以上の通気弁を使用するシステムおよび方法に関する。好適に、流体の流れの順序および流速の変化のうち少なくともいずれか一方のような流体の制御は、1つ以上の通気弁を開閉することにより、および略定圧にて操作される流体流(例えば真空)の単一の源の付与により行われ得る。これにより、意図した使用者による装置の操作および使用を単純化することができる。
(もっと読む)


a)前記供給物が前記プラズマ中に導入され、酸素ガスの供給が前記少なくとも一種のプラズマ形成ガス、および/または前記プラズマもしくは前記プラズマの近傍にて達成され、それにより原子への分解が誘発されたガスが得られる工程;b)反応囲壁室中において、原子への分解が誘発された前記ガスを熱破壊する第一運転が行われる工程;c)前記第一熱破壊運転を経た前記ガスを空気および/または酸素と混合することにより、前記ガスを熱破壊する第二運転が行われる工程;d)前記混合からの前記ガスの少なくとも一部を冷却することにより、再結合が達成される工程;e)前記ガスが排出される工程。
(もっと読む)


【課題】積層体にフラクタルプレートを追加することにより、すなわち積層体のフラクタル数を大きくすることによって、流体の動作のほぼ無制限のスケーリングを実現すること。
【解決手段】流体の制御された分配及び/または回収が望ましいすべての場合において使用することが可能な流体輸送フラクタル装置は、流れの方向に沿って徐々にスケールが小さくなるかまたは大きくなるフラクタルステージ(プレート1〜8)を配置して構成される。好ましい構成の1つでは積層体として配されるプレートに再帰的なフラクタルパターンの段階が割り当てられる。 (もっと読む)


【課題】
安価かつ簡便な構成で、その維持、管理に時間、費用更には熟練を必要としない微粒子の操作装置であって、特別の熟練を要することなく、精度の高い微粒子の処理を可能とする装置を提供すること。
【解決の手段】
微粒子懸濁液を収容する収容部、一対の電極が配置された電極基板及び電極に接続された交流電源とから構成され、前記収容部の一部は絶縁体の材料で構成されるとともに前記懸濁液を前記各電極に接触可能とする貫通孔を有することを特徴とする、微粒子操作装置により、前記課題を解決する。 (もっと読む)


本システムは、区画に貯蔵するための第1の量のガスを圧縮するために区画に流体結合され、第1の量のガスを運ぶための圧縮経路を備える圧縮システムと、区画からの第2の量のガスを膨張させるために区画に流体結合され、第2の量のガスを運ぶための膨張経路を備える膨張システムと、第1の量のガスを区画へ運ぶために圧縮経路に流体結合された第1の経路と、第2の量のガスを区画から膨張システムへ運ぶために膨張経路に流体結合された第2の経路と、第1の経路、第2の経路、圧縮経路、および膨張経路のうちの1つに流体結合された分離ユニットとを備えており、分離ユニットは、第1および第2の量のガスのうちの1つからある量の二酸化炭素を除去する。 (もっと読む)


【課題】生成物の品質向上および安定した製造を可能とする気液反応装置および気液反応方法を実現すること。
【解決手段】 反応基質を含む液体と気体を反応させて生成物を生成する気液反応装置において、反応空間と気体流路とが気体透過材により一部または全部区分されて形成された反応容器と、前記反応空間に前記液体を供給し、前記反応空間における前記液体の供給量を制御する液体供給装置と、前記気体流路に前記気体を供給する気体供給装置と、を有し、前記気体流路の気体を前記気体透過材を透過させて前記反応空間に移動し、反応空間の液体と反応させることを特徴とする。 (もっと読む)


本発明は、一般に液滴を生成するシステムおよび方法に関連する。上記液滴は、例えば、ライブラリとして使用するために様々なスピーシーズを含んでいてもよい。いくつかの場合では、フローフォーカシング技術のような技術を使用して、少なくとも1つの液滴が複数の液滴を生成するために使用される。一実施形態では、様々なスピーシーズを含む複数の液滴は、分割され、様々なスピーシーズを液滴中に含む液滴の集合体を生成しうる。特定の実施形態では、液滴の集合体は、すべてそこに同じスピーシーズを含む液滴の様々な部分母集団を含んでいてもよい。液滴のそのような集合体は、いくつかの場合では、ライブラリとして使用されてもよく、あるいは、他の目的に使用されてもよい。
(もっと読む)


【課題】分離膜を介して、体積比の大きい液体と気体の安定した気液反応を、連続的に、効率的に行うことができる気液反応装置を提供する。
【解決手段】液体タンク51の液体を液体供給部4により気液反応部1の上部に送り、他方、気体を気体供給部2により気液反応部1の下部へ送り、もって、液体と気体とを気液反応部の内部圧力を調整しながら対向流としてその内部で気液反応させ、反応後に発生した気体を、気液反応部1の上部の分離膜11の下部に気層を保持しながら、分離膜11を介し、反応後の気体を気体処理部3に送る。 (もっと読む)


本発明は、撹拌装置及びそれに備えられる撹拌フックに関する。本発明は、反応器の内部に回転自在に設けられる回転軸と、前記回転軸の外周面に設置され、前記回転軸とともに回転しながら内部物質を撹拌する回転翼と、前記反応器の内壁に一対の撹拌フックが互いに離隔するように設けられ、前記回転翼が前記撹拌フックの間を通過する撹拌フックとを含む。また、前記撹拌フックの間の幅は、前記回転翼が進入する入口より前記回転翼が離脱する出口がさらに広く形成される。このような本発明によれば、撹拌フックにおいて回転翼が進入する入口から回転翼が離脱する出口まで圧力が一定に作用するので、撹拌フックにねじりモーメントが発生することが最小化される。これにより、撹拌フックの耐久性が向上し、製品の信頼性が増大する。 (もっと読む)


161 - 180 / 1,097