説明

Fターム[4G075BD14]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理操作−対象の状態 (2,801) | 特定の接触状態を呈する (1,849) | 気体−固体接触 (346)

Fターム[4G075BD14]に分類される特許

1 - 20 / 346


【課題】付加的な外部の支持部無しに、容易に、装置内で圧力を加えられた流体が発生するすべての力に耐えることができる装置を提供する。
【解決手段】流体処理装置は、第1のエンドピース11及び第2のエンドピース12と、第1のエンドピース11と前記第2のエンドピース12との間に配置される少なくとも1つの流体処理ユニット13と、前記第1のエンドピース11と前記第2のエンドピース12との間に延びて、流体処理ユニット13と、前記第1のエンドピース11及び前記第2のエンドピース12とを共に押し付けるように配置されたリテーナー26と、を備える。 (もっと読む)


【課題】体格の小型化を図りつつ、製造コストを低減することができる反応器を提供する。
【解決手段】未反応物を反応させて水素と窒素を生成する反応部32a、32bと、水素および窒素から窒素を選択的に吸蔵することにより、窒素を分離除去する除去部33a、33bとを備え、除去部33a、33bは、窒素を選択的に吸蔵する際に熱を放出する吸収剤330a、330bと、吸収剤330a、330bが放出する熱を除去する冷却手段35a、35bとを有する。 (もっと読む)


【課題】安全性を確保しつつ粉体を均一に処理することが可能な粉体攪拌装置を提供する。
【解決手段】粉体攪拌装置20は、反応容器100および回転駆動装置200を含む。反応容器100は、円筒形状の外周壁110および一対の端面壁111を有する。外周壁110の一端および他端にそれぞれ端面壁111が設けられる。反応容器100は、外周壁110の軸心が水平方向に平行になるように断熱カバー400内に配置される。外周壁110は、その軸心に関して回転対称な内周面を有する。粉体処理時には、反応容器100内に粉体が収容され、反応容器100が回転駆動装置200により外周壁110の軸心を通る回転軸R1の周りで回転される。この状態で、反応容器100内に処理ガスが供給される。また、反応容器100内の処理ガスが排出される。 (もっと読む)


【課題】分解過程のガス濃度の変化に対応して、最適な配合割合の触媒を採用させることにより、ガスの分解効率を高めたガス分解装置を提供する。
【解決手段】固体電解質層101と、この固体電解質層の一側に設けられる第1の電極層102と、他側に設けられる第2の電極層105とを備える複数のガス分解素子100a,100b,100cを含んで構成されるガス分解装置であって、上記第1の電極層又は/及び第2の電極層に含まれる触媒の組成が、上記ガス分解素子によって異なるように構成されているとともに、上記複数のガス分解素子に、ガスを順次作用させて分解するように構成されている。 (もっと読む)


【課題】分解過程のガス濃度の変化に対応して、最適な配合割合の触媒を採用させることにより、ガスの分解効率を高めたガス分解素子を提供する。
【解決手段】固体電解質層101と、この固体電解質層の一側に設けられる第1の電極層(アノード電極)102と、他側に設けられる第2の電極層(カソード電極)105とを備えて構成されるガス分解素子100であって、上記第1の電極層又は/及び第2の電極層に設けられる触媒151、152の配合割合が、ガスの流動方向に向けて変化するように形成されている。 (もっと読む)


【課題】高温セラミック膜反応装置の分野では、これらの潜在的な運転上の問題に対処しこれらを克服する新しい膜モジュール及び反応装置システム設計に対するニーズが存在する。
【解決手段】(a)各々反応物質ゾーン、酸化剤ゾーン、該反応物質ゾーンと該酸化剤ゾーンを分離する単数又は複数のイオン輸送膜、反応物質ガス入口領域、反応物質ガス出口領域、酸化剤ガス入口領域及び酸化剤ガス出口領域を含む2つ以上の膜酸化段;(b)各々の膜酸化段対の間に配置されかつ該対の第1の段の反応物質ガス出口領域を該対の第2の段の反応物質ガス入口領域と流動連絡状態に置くように適合されている段間反応物質ガス流路;及び(c)各々、任意の段間反応物質ガス流路又は段間反応物質ガスを収容する任意の膜酸化段の反応物質ゾーンと流動連絡状態にある、単数又は複数の反応物質段間フィードガスライン、を含んで成るイオン輸送膜酸化システムを提供する。 (もっと読む)


【課題】プラズマによる劣化を回避しつつ点火機構を簡略化する。
【解決手段】一方の端部が閉塞板11bで閉塞され、かつ他方の端部が開放端に形成された筒状の筐体11と、閉塞板11bの内面に筐体11の筒長方向に沿って延出するように立設されると共に入力した高周波信号S1を放射する棒状の放射器14とを備え、閉塞板11b側から開放端側に向かう気流を筐体11内に発生させるように筐体11内にガス供給部4によって放電用ガスGが供給され、かつ放射器14が高周波信号S1を放射している状態において、放射器14の先端近傍から気流に乗って筐体11の外方へ伸びるプラズマPを発生させるプラズマ処理装置1であって、放射器14との間で放電Dを発生させてプラズマPを点火する点火導体5aを有する点火機構5を備え、放電電極としての点火導体5aの先端は、放射器14の先端よりも気流の上流側に配設されている。 (もっと読む)


【課題】粉体を処理ガスで均一に処理することが可能な粉体処理装置を提供する。
【解決手段】処理容器10内において上昇搬送路60が上下方向に螺旋状に延びる。上昇搬送路60は、粉体が移動するための帯状搬送部61を有する。粉体が粉体供給部3により上昇搬送路60に供給される。上昇搬送路60が振動モータ40により振動されることにより、上昇搬送路60に供給された粉体が上昇搬送路60に沿って移動される。上昇搬送路60内で移動する粉体の高さが高さ規制部材64により規制されるとともに粉体が撹拌される。処理容器10では、上昇搬送路60に供給された粉体が移動中に処理ガスにて処理される。処理された粉体は粉体回収部4で回収される。 (もっと読む)


【課題】粒径の均等性を向上させることが可能な造粒装置の提供を目的とする。
【解決手段】本発明の造粒装置100によれば、造粒容器61の中心部、天井部、側部、底部そして中心部へと循環する循環ガス流に乗って粉体が造粒容器61内を循環する。この過程で粉体がプラズマフレームF2によって加熱されて粉体同士が付着し、粒径が徐々に大きくなる。そして、所定の粒径以上に成長した大径粒体は、自重によって循環ガス流から離脱する。ここで、循環ガス流から離脱した大径粒体は、造粒容器61の底部に貫通形成された環状孔82を通って直ちに造粒容器61の外部、即ち、回収容器10へと排出されるから、所定の粒径以上に成長した大径粒体に、循環中の粉体又は粒体がさらに付着することが防がれる。これにより、大径粒体の過剰な大型化を抑えて、粒径の均等性を向上させることが可能となる。 (もっと読む)


【課題】UV硬化に際して酸素による硬化阻害を抑制するため、不活性ガスを光源を経由させて硬化部に直接吹き付けることにより、高精度・低濃度の濃度管理を可能とし、かつ光源を効率的に冷却し得る紫外線照射ユニットを提供する。
【解決手段】不活性ガス供給口9および不活性ガス排出口10および不活性ガスを充填する空間部11を有する筐体8を備え、紫外線(UV)を照射する紫外線光源1が回路基板4に固定され、不活性ガス排出口の近傍に配置され、紫外線光源に電力を供給するように構成された電源を備えた、紫外線照射ユニット。 (もっと読む)


【課題】気体を効果的に改質し、気体の反応効率を高めるようにする。
【解決手段】気体改質方法は、気体の流路中に、セラミック粒子をバインダーで塗布して得た改質面を配置し、改質面近傍に気体を通過させて、当該気体の改質を行う。セラミック粒子は、ルチル系酸化チタン粒子と、ルチル系酸化チタン粒子との酸化還元処理により電解質を生成する程度の高いイオン化傾向を有する金属粒子と、の混合物を酸化還元処理し、当該酸化還元処理により生成した電解質を溶媒で電気分解し、陰極に析出された物質を焼成して得たものである。 (もっと読む)


【課題】物品に付着しているよごれなどの有機物を大気中に飛散させることなく分解または除去でき、かつ物品の損傷が抑えられる表面処理方法、物品の損傷を抑えながら、物品表面をエッチングする表面処理方法、および表面を高度に洗浄し、損傷がほとんどない物品や表面をエッチングしながら、損傷のない物品を提供する。
【解決手段】水を含む液体中の水蒸気気泡内に発生したプラズマを、該液体中において、水に対する接触角が90度以下である材料に付着している有機物に接触させて、該有機物を材料から除去する表面処理方法;水を含む液体中の水蒸気気泡内に発生したプラズマを、前記液体中において、水に対する接触角が90度以下である材料に接触させて、該材料を破壊せずに、該材料の表面をエッチングするエッチング方法。 (もっと読む)


【課題】 随伴ガスを効率よく分解することができる電気化学セルおよびそれを備える電気化学装置を提供する。
【解決手段】 本発明の電気化学セルは、第1電極と、該第1電極を覆うように設けられイオン伝導部と電子伝導部とが隣接して設けられてなる導電層と、該導電層を覆うように設けられた第2電極とを備えることにより、効率よく随伴ガスを分解することができる。また、上記電気化学セルを複数個備えることにより、効率よく随伴ガスを分解することができる電気化学装置とすることができる。 (もっと読む)


【課題】 揺動により攪拌する方式の連続型揺動式粒子表面処理装置を提供する
【解決手段】 複数の半円弧形状の反応流路1と、反応流路の一方端に反応流路入口1a、他端に反応流路出口1bを有し、隣接する反応流路入口と反応流路出口が逆止管2を経由して接続されるように反応流路の円弧中心を共通の軸上に位置するように並列配置し、並列配置した反応流路の一方端の反応流路の入口から粒子30を供給し、他端の反応流路の出口から粒子を排出し、所定の反応ガスを反応流路に供給し、反応流路を円弧中心に揺動させる。 (もっと読む)


【課題】プラズマ化が困難なガスのプラズマを容易に生成することができるプラズマ生成用ガスおよびプラズマ生成方法並びにこれにより生成された大気圧プラズマを提供する。
【解決手段】大気圧プラズマを生成するために用いられるプラズマ生成用ガスであって、プラズマとなることにより処理能力を有するとともに、プラズマ生成用ガス全体をプラズマ源に搬送するためのベースガス(キャリアーガス)としてのアルゴン(Ar)と、前記大気圧プラズマの処理効果を向上する処理効果向上ガスとしての酸素ガスもしくは炭酸ガスとの混合ガスとした。 (もっと読む)


【課題】簡単な構造で特に被処理物の表面の滅菌や殺菌などを行うことができるとともに既存の医療装置への組み込みも簡易に行うことが可能な表面活性化処理装置を提供する。
【解決手段】筒体11の一端の開口部12内側に、貫通孔25が設けられた2枚の電極板21,22を対向配置した第1のプラズマ電極P1を設け、該筒体11内へ第1の供給口13から供給される第1のキャリアガスG1を該貫通孔25を通過させてプラズマ化して該筒体11の開口部12から外部へ噴射して被処理物S表面を活性化する表面活性化処理装置10であって、筒体11内に第1の供給口13から供給される第1のキャリアガスG1を整流化するための整流化手段30を、第1のキャリアガスG1が第1のプラズマ電極P1の貫通孔25を通過する手前に設けたことを特徴とする表面活性化処理装置。 (もっと読む)


【課題】従来の過熱水蒸気を用いる方式や接触水素化反応を用いる方式の装置とは異なる方法で、これらの方式と同等かそれ以上の分解性能を有する、有機物の分解処理装置を提供する。
【解決手段】有機物分解処理装置1は、有機物分解活性ガスの入口部11と排気ガスの出口部12とを有し被処理物100を収容する中空状の本体10と、空気を下記の化学式にて示される触媒21に接触させて有機物分解活性ガスを生成する有機物分解活性ガス生成手段20と、有機物分解活性ガスを入口部11を通して本体10内部に送りこむ有機物分解活性ガス導入手段30と、被処理物100の表面を少なくとも300℃以上に加熱する加熱手段40とを備えた構成とした。
NaX3Al6(BO33Si1618(OHF)4
(式中、XはMg,Fe,Li,Al,Mn,Caのいずれか) (もっと読む)


【課題】親水性付与が所望される表面への親水性付与の実効性を高める。
【解決手段】表面処理を受ける被処理材Wを、窒素充填済みの処理室110にワークテーブル140にて収容し、この収容済みの被処理材Wに対して、親水基の生成源となる酸素を被処理材Wの被処理表面に沿った層状のガス流OFとして放出し、酸素の活性化を誘発する紫外線を、処理室110に収容済みの被処理材Wの被処理表面に向けて紫外線照射光源120から照射する。 (もっと読む)


【課題】流体を低圧用途に分配するための低圧の吸着体ベースの流体貯留および分配容器を使用する際における流体利用率を最大にする改良された方法の提供。
【解決手段】容器内にナノ多孔質炭素吸着体20を保持する流体貯留および分配装置10で、1つの実施態様は脱硫用途、別の実施態様は塩素ガスなどの貯留である。配置構成では複数の多孔質炭素物品が移動しないように拘束するために位置安定化構造が用いられる。制御された方法で酸素と反応するシランを貯留するために炭素吸着体を使用する赤外線放射デバイスについて、吸着体の抵抗および/または誘導加熱によって炭素吸着体が残留流体を脱着する配置構成は、炭素吸着体を膨張剤と接触させ、続いて炭素吸着体を加圧したガス状浸透剤と接触させて、膨張剤および浸透剤を除去することにより、多孔質炭素吸着体の充填能力を増加させる方法。 (もっと読む)


【課題】 エネルギーを有効活用して結果的にコストを削減することが可能なガス処理システムを提供する。
【解決手段】 含水素化合物を含む被処理ガスを処理するガス処理システムであって、電解質11を挟んで一対の電極12、13を対向させたガス分離素子10によって含水素化合物を分解するガス分解装置100と、ガス分解装置100によって生じた水素分子を分離する水素分離装置200とからなる。ガス分解素子10の一方の電極12は、他方の電極13に対向している面とは反対側の面に、多孔質金属体14が密着して取り付けられているのが好ましく、また、水素分離装置200は、多孔質支持体51とその表面に積層された水素分離膜52とからなるのが好ましい。 (もっと読む)


1 - 20 / 346