説明

Fターム[4G075CA51]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理手段 (6,634) | 特定物質の添加、使用 (1,395)

Fターム[4G075CA51]の下位に属するFターム

Fターム[4G075CA51]に分類される特許

61 - 80 / 407


【課題】高分子駆動器を含む微小バルブ構造体及びラボオンチップモジュールを提供する。
【解決手段】微小バルブ構造体は基板10上に配置される柔軟構造物20及び柔軟構造物20内に挿入される高分子駆動器40を含むことができる。この時、柔軟構造物20は微小流路35を定義するバルブ部25を有し、高分子駆動器40は柔軟構造物20によって微小流路35から分離される。さらに、高分子駆動器40はバルブ部25の変位を制御することによって、微小流路35の幅を変化させるように構成される。 (もっと読む)


【課題】 処理物の内外から効率良く昇温させ、加熱処理の処理時間を大幅に短縮させることができる蒸気加熱装置を提供することを目的とする。
【解決手段】 加硫缶30内に高温高圧の水蒸気を供給する水蒸気発生源と蒸気供給管33を備え、さらに、加硫缶30内にマイクロ波電力を供給するマイクロ波回路35とマイクロ波電力源44とを備え、前記加硫缶30に収納させた未加硫ゴムや半加硫ゴムなどのゴム製品46を高温高圧の水蒸気とマイクロ波電力とからなる加熱媒体に晒し、高温高圧の水蒸気とマイクロ波電力の相乗効果でゴム製品46の加硫処理に必要な昇温を短時間で行なうことができる構成となっている。 (もっと読む)


【課題】ハニカム構造体に直接水分を補給して、更なるガス処理能力の向上を図る。
【解決手段】ハニカム構造体4−1〜4−4を水分補給のための対象ハニカム構造体とし、ハニカム構造体4−1および4−4のガス流対向面4bに細管14の給水口14−1および14−2を接して設け、ハニカム構造体4−2および4−3のガス流対向面4bに細管15の給水口15−1および15−2を接して設け、毛細管現象又は送風ファンの負圧現象によりタンク16,17内の水分を細管14,15を通してハニカム構造体4−1〜4−4に直接補給する。 (もっと読む)


【課題】 ビルドアップ法を用いて結晶性の高い微粒子を製造する方法及び装置を提供する。
【解決手段】前記微粒子の形成材料の溶解度が小さい貧溶媒中に気泡を発生させる気泡発生工程と、前記微粒子の形成材料が溶解した溶解液と、前記気泡を含んだ前記貧溶媒と、を混合させる混合工程と、を備え、前記気泡の表面で前記微粒子を析出させる。 (もっと読む)



【課題】処理中に電極に電圧を印加することなく排気ガス中に含まれる粒子状物質を処理する排気ガス浄化システムを提供することであり、また、固体炭素を燃料として発電しつつ、排気ガス中に含まれる固体炭素を処理する排気ガス浄化システムを提供すること。
【解決手段】内燃機関から排出される排気ガス中に含まれる粒子状物質を捕集するサイクロン捕集器を備える排気ガス浄化システムであって、前記サイクロン捕集器により捕集した粒子状物質をサイクロン捕集器に併設された隔室にある電気化学リアクターに供給し、前記電気化学リアクターが、供給された粒子状物質を電気化学的に除去することを特徴とする排気ガス浄化システム。 (もっと読む)


【課題】液相中で連続的に安定してレーザーアブレーション処理を施すことができ、液相レーザーアブレーション処理による粒子の製造効率を十分に高度なものとすることが可能な液相レーザーアブレーション装置を提供すること。
【解決手段】溶媒13中のターゲット14に対してレーザー光Lを照射して液相中でレーザーアブレーションを行うために用いる液相レーザーアブレーション装置であって、
レーザー光Lを発生させるためのレーザー発振器10と、レーザー光Lが透過可能な底部Bを有し且つ溶媒13を保持するための処理容器12と、処理容器12内の底部B上に配置させたターゲット14とを備え、且つ、処理容器12が、ターゲット14に対して処理容器12の底部Bを透過したレーザー光Lが照射されるように配置されていることを特徴とする液相レーザーアブレーション装置。 (もっと読む)


水素ベースの燃料および構造要素を生成する透過面を有する反応容器、ならびに関連するシステムおよび方法であって、特定の実施形態による化学反応器は、反応領域を有する反応容器と、反応領域に流体連通した状態で結合された水素供与体供給源と、反応領域に流体連通した状態で結合された蒸気供給源とを含み、この反応器は、反応領域にある透過面をさらに含み、この透過面は、反応領域に入る反応体および/または反応領域に入る放射エネルギーを透過させることができる。
(もっと読む)


パルスレーザ溶発に基づいて太陽光吸収化合物材料のナノ粒子をつくる方法が開示されている。この方法は、太陽光吸収化合物材料のターゲット材料を、10フェムト秒〜500ピコ秒のパルス幅のパルスレーザビームで照射して、ターゲットを溶発し、ターゲットのナノ粒子をつくる。ナノ粒子を集めて、ナノ粒子溶液を基板に塗布して、薄膜太陽電池をつくる。この方法は、出発ターゲットの組成と構造的な結晶相とを保持する。この方法は、薄膜太陽電池を非常に廉価に製造する方法になる。
(もっと読む)


【課題】 COを吸収した藻類を捕集・隔離してCOを確実に削減する。
【解決手段】 反応槽2に藻類3を貯留し、該藻類3に火力発電所1からのCOを供給するとともに太陽光を照射して光合成を行わせる。この光合成によりCOを吸収した藻類3を地中の空洞部6に隔離し、COを隔離する。 (もっと読む)


非熱的な繰り返しパルス化滑り放電リアクタは、パルス化高電圧電位を供給するように構成される高電圧電源と、ガスの流入口と、液体吸収剤の流入口と、生成物の流出口と、高電圧電源に接続される複数の第1電極と、接地される複数の第2電極と、トラフと、を含み、複数の第1電極は複数の第2電極から放電領域によって分離される。 (もっと読む)


【課題】マイクロ流路構造及びそれを備えたマイクロ流路デバイス並びにそれらの製造方法において、その製造が容易且つ安価にできるようにすることを目的とし、又、溝が埋まらず、且つ漏れのないようにしながら、その製造が容易且つ安価にできるようにする。
【解決手段】静電印刷方式又はインクジェット印刷方式で作製された原版が使用されて形成された多孔質表面を有し、樹脂製である樹脂製マイクロ流路構造であり、又、そのマイクロ流路構造を構成する溝部2aを有する溝側プレート2と溝部2aを覆う蓋部3aを有する蓋側プレート3からなり、溝部2aを形成する凹部の側面2b,2cと、蓋部3aを形成する凸部の側面3b,3cとが傾斜面であり、その凹部に凸部が圧入されて、溝側プレート2に蓋側プレート3が組み付けられているマイクロ流路デバイス1である。 (もっと読む)


ナノ粒子を形成するためのナノインプリントリソグラフィ法は、多層基板上に犠牲材料をパターン形成すること含む。幾つか場合では、多層基板のリムーバブル層に又は層内にパターンを転写し、機能材料を、多層基板のリムーバブル層に配置して凝固させる。その後、機能材料の少なくとも1つの部分を除去して、リムーバブル層の凸部を露出させ、機能材料の柱をリムーバブル層から剥離させて、ナノ粒子を得る。他の場合では、多層基板は機能材料を含み、多層基板のリムーバブル層に又は層内にパターンを転写する。犠牲層を除去し、機能材料の柱をリムーバブル層から剥離させて、ナノ粒子を得る。 (もっと読む)


本発明は、イオン液体を用いてナノスケール粒子を製造する方法に関する。上記方法を用いると、高結晶性粒子を得ることができる。本方法はごく少数の工程を含むものであり、イオン液体は容易に再生することができる。 (もっと読む)


本発明は、マイクロ流体デバイス中でガス交換するためのシステムおよび方法ならびにそのようなマイクロ流体デバイスを製造する方法を提供する。このシステムおよび方法は、患者における肺機能を補助するため酸素を血液に移送するために使用することができる。 (もっと読む)


【課題】近年、遠赤外線を利用した商品や技術がたくさん開発されているが、効果の安定性や均一性に問題があるものがほとんどである。その主な理由として遠赤外線の発生源や周波数が特定されておらず、また現在の技術レベルで解析することが難しいためと考えられる。本発明では効果が明確で、持続性のある遠赤外線発振材を安価で提供することを目的としている。
【解決手段】地球の表面積の70%が水に覆われ、人体の60%以上が水で構成されていることに着目し、水に共鳴共振する遠赤外線領域の共鳴電磁波を発振する物体を研究し、一つの方法として、40℃〜250℃で1気圧〜10気圧の加熱圧縮空気や複数のカルボキシル基を配位子とするナトリューム錯体や加熱処理された金属やセラミックから適当と思われる電磁波が放射されていることを見出し、その電磁波を一定温度下で他の材料に転写することにより、遠赤外線効果を得られる基材が安価で大量に提供できる。 (もっと読む)


【課題】PFC,SF等の既存の手段では分解が困難な環境汚染物質、及びフロンガスその他の既に有効な分解処理方法が提供されているが、より低温度での分解処理が好ましい環境汚染物質からなる難分解物質を従来より低温で、かつ、短時間に高分解率で分解するようにした分解処理方法とその装置を提供することを目的とする。
【解決手段】過熱蒸気と反応して水素を発生する炭素含有物質を所定温度に加熱し、被分解処理物と接触させることによって、被分解処理物の活性化エネルギーを下げて活性化させるとともに、被分解処理物を過熱蒸気と接触させることによって、活性化された被分解処理物を分解処理する難分解物質の分解処理方法とその装置を提供する。そして、活性化させた被分解処理物を過熱蒸気による加水分解及び/又は発生した水素による還元反応によって分解処理する。 (もっと読む)


a)前記供給物が前記プラズマ中に導入され、酸素ガスの供給が前記少なくとも一種のプラズマ形成ガス、および/または前記プラズマもしくは前記プラズマの近傍にて達成され、それにより原子への分解が誘発されたガスが得られる工程;b)反応囲壁室中において、原子への分解が誘発された前記ガスを熱破壊する第一運転が行われる工程;c)前記第一熱破壊運転を経た前記ガスを空気および/または酸素と混合することにより、前記ガスを熱破壊する第二運転が行われる工程;d)前記混合からの前記ガスの少なくとも一部を冷却することにより、再結合が達成される工程;e)前記ガスが排出される工程。
(もっと読む)


【課題】 現在、無公害エネルギーを得るために、より以上の天然資源や環境破壊を伴う公害エネルギーを使用する矛盾に陥っている。しかるに、水の電気分解技術や超音波利用技術、そして、原子水素ガスやマイクロバブルの発見、熱電変換素子の発明など、本発明が利用する、環境破壊を可能な限り回避した素晴らしい技術は存在する。ただし、技術を単独で利用せず複合させて特長を重ねる試みが必要であり、異種技術複合を課題とする応用研究分野を公的に認知し、技術複合システムを開発しなければならない。
【解決手段】 上述の各技術を複合利用したエネルギー生産システムを構築し、無公害で無尽蔵の電気エネルギーと燃料を得る、高効率で簡便な方法を提供する。人間社会の最小構成単位である家庭での使用エネルギーを安価で補うシステムとして利用し、エネルギー事情を改善することが世界のエネルギー事情を改善する。このシステム(図1)は、容易に工場など大きなプラントに対応させることが可能である。 (もっと読む)


バルブユニットは、相転移物質を含むバルブ物質と、前記チャンネルと連通し、内部に前記バルブ物質を収容するバルブ物質チャンバーと、前記チャンネルの一区間に配置される融着構造物と、を含み、前記バルブ物質チャンバー内の前記バルブ物質は、エネルギーが加えられることによって溶融され、前記融着構造物が形成された前記チャンネルの区間に流入し、前記バルブ物質は、加熱されて前記融着構造物を溶かし、前記チャンネルの融着を行うことによって前記チャンネルを閉鎖する。
(もっと読む)


61 - 80 / 407