説明

Fターム[4G075ED11]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置−可動体 (801) | ベルト、コンベア (49)

Fターム[4G075ED11]に分類される特許

41 - 49 / 49


【課題】 TE10モードのマイクロ波を伝送する方形導波管の中心軸に沿って反応対象を流すことにより、反応対象の化学反応を高効率かつ均一に行わせる新しい装置を提供する。
【解決手段】 化学反応装置は、TE10モードのマイクロ波を伝送する方形導波管1と、化学反応を行わせる流動性の反応対象3を流通させるために導波管内に配置される流通路2とを具備する。流通路2は、マイクロ波を透過させる物質で作られ、導波管1の軸方向に延伸する。流通路2の断面において電界に平行な辺は電界に垂直な辺より長い長方形状で、長さ方向の大半が導波管の中心軸付近に配置される。流通路の上流端から反応対象を流し込み、下流端から流出させる間に、反応対象にマイクロ波を照射して化学反応を起こさせる。 (もっと読む)


【課題】 本発明は活性エネルギー線照射室内の不活性ガス濃度を維持し、かつ照射室の入口および出口から不活性ガスが外部に漏れることを防ぐことができる照射装置を提供することを課題とする。
【解決手段】 本発明の活性エネルギー線照射装置は、不活性ガスが供給される照射室内に被照射物が導入される入口部及び被照射物が送り出される出口部に、照射室内の気体の排気口を有する。また本発明の活性エネルギー線照射装置においては、照射室内への不活性ガスの供給量を毎分A立方メートル、入口部の排気量を毎分B立方メートル、そして出口部の排気量を毎分C立方メートルとした場合に、A<B+CかつB<Cとするのが好適である。さらにB+CがAの10倍以上であることがより好ましい。 (もっと読む)


【課題】被処理物を搬送しながら、気体からプラズマを発生させて被処理物をプラズマ処理する装置において、被処理物とプラズマ活性種との接触の効率を向上させ、これによって被処理物の処理効率を向上させるような構造を提供する。
【解決手段】プラズマ発生装置は、誘電体31および電極8、8Aを備えている電極装置30、および被処理物21を搬送し、誘電体7に対向して移動させるための搬送手段5を備えている。電極8と搬送手段5との間に電圧を印加することによってプラズマを発生させ、被処理物21を処理する。 (もっと読む)


【課題】 ワークをより均一に照射することのできる照射装置を提供する。
【解決手段】 照射装置100を、xy平面上に配されたワーク200をx軸方向に移動させるためのワーク移動手段110と、xy平面に平行に配された基板121に複数個の光源S1,1〜Sm,nをm行n列(mは2以上の整数、nは1以上の整数)に配してなる照射部120とを備えたものとし、1行1列目に配された光源S1,1の中心Aと2行1列目に配された光源S2,1の中心Bとを結ぶ線分ABは、x軸に対して傾斜するように設定した。 (もっと読む)


【課題】プラズマ処理時における被処理体の熱変形を防止することができ、被処理体の全体に渡って均一なプラズマ処理を施すことができるプラズマ処理装置を提供すること。
【解決手段】本発明のプラズマ処理装置1は、ワーク2を搬送する第1のコンベア3および第2のコンベア4と、ワーク2に対しプラズマ処理を施すプラズマ処理部5と、ワーク2をプラズマ処理するのに先立ってワーク2を予熱するヒータ61が設けられた予熱部6とを備える。プラズマ処理部5でプラズマ処理されているときのワーク2の最高温度とほぼ同等またはそれ以上の温度になるまでワーク2を予熱部6にて予熱した後、ワーク2をプラズマ処理する。 (もっと読む)


本発明は、容器を搬送するための運動システムと、大気圧で動作する、それぞれ1個ずつ容器を処理するべく設計された複数のプラズマ発生器とを備えた、プラズマを使用して容器の表面を処理するためのデバイスに関する。プラズマ発生器は、処理ガス供給システムと、スイッチとして機能する少なくとも1つのトランジスタもしくはLCアダプタを備えた、電流にパルスを供給するべく設計された電源システムとを備えている。
(もっと読む)


【課題】マイクロ波の照射を処理物の上下面のみならず側面からも照射可能にし、処理物の乾燥ムラまたは加熱ムラを確実に防ぐマイクロ波照射処理装置を提供する。
【解決手段】処理槽10内に処理物1を搬入して上下面の両方から導波管16を介してマイクロ波発生器12a、13aで発生させたマイクロ波を導入及び照射して乾燥または温度を上げるマイクロ波照射処理装置であって、処理物1を前面から後面に搬送して処理するコンベア11の処理槽10を備え、この処理槽10にマイクロ波を上下面の両方から照射可能な第1照射手段12と、この第1照射手段12に加えて処理物1両方の側面からも照射可能な第2照射手段13とを備える。ここで、マイクロ波発生器12a、13aには、処理槽10に導波管16を介して各方向からそれぞれ同時または別々にマイクロ波を照射可能に制御する制御手段19を接続する。 (もっと読む)


本発明は、ソノトロードを用いて流動性媒体内に超音波を導入する装置及び方法に関する。ここで、流動性媒体はソノトロードとは直接接触することはない。開示は、以下のステップからなる方法である。フィルム(8)をソノトロード(4)の上に、ソノトロード(4)に押しつけられるフィルム(8)による接触力が常に、フィルム(8)が対応する周波数と振幅でのソノトロード(4)の上昇動作に追随することが出来る大きとなるように、配置する。フィルム(8)を介して超音波力を媒体(2)に適用し、摩耗現象をフィルム(8)に転嫁させる。
(もっと読む)


本発明は、コロナ放電によって反応ガスをナノメートルサイズの均一な超微粒子に製造することができる、コロナ放電を用いた超微粒子製造装置及びその方法を開示する。本発明の超微粒子製造装置は、反応ガス供給装置によってノズルに反応ガスを供給して噴射する。電圧供給装置がノズルに高電圧を印加すると、ノズルではコロナ放電が起こって噴射される反応ガスを分解して多量の超微粒子を生成し、捕集板は超微粒子を捕集する。また、ダクトは、ノズルを取り囲んでノズルとの間に通路を形成し、ダクトの通路に供給されるシースガスは、ノズルと捕集板との間にガスカーテンを形成して超微粒子の流動を誘導する。ダクトの通路に他の反応ガスを供給した後、熱エネルギーを加えると、他の反応ガスが熱的化学反応を起こして多量の他の超微粒子を生成し、他の超微粒子はコロナ放電によって生成される超微粒子にコートされる。超微粒子と他の反応ガスをノズルの下流に位置している他のノズルによって噴射しながらコロナ放電を起こすと、超微粒子に、他の反応ガスから生成される他の超粒子がコートされる。

(もっと読む)


41 - 49 / 49