説明

Fターム[4G077KA01]の内容

Fターム[4G077KA01]に分類される特許

1 - 20 / 61


【課題】アモノサーマル法で窒化物単結晶を製造する際に、昇温工程で種結晶表面や反応容器の内壁に品質の低い結晶が析出するのを抑制し、その後の成長工程において、高い原料使用効率で高品質な窒化物単結晶を成長させるようにすること。
【解決手段】アモノサーマル法の昇温工程において、種結晶に対して表面から1μm以上の厚みを溶解させるメルトバック処理を施す。 (もっと読む)


【課題】ホモエピタキシャルLED、LD、光検出器又は電子デバイスを形成するために役立つGaN基板の形成方法の提供。
【解決手段】約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板上に配設された1以上のエピタキシャル半導体層を含むデバイス。かかる電子デバイスは、発光ダイオード(LED)及びレーザーダイオード(LD)用途のような照明用途、並びにGaNを基材とするトランジスター、整流器、サイリスター及びカスコードスイッチなどのデバイスの形態を有し得る。また、約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板を形成し、該基板上に1以上の半導体層をホモエピタキシャルに形成する方法及び電子デバイス。 (もっと読む)


【課題】人工水晶育成時の結晶の成長速度が大幅に向上するとともに、不純物及びインクルージョン含有量の少ない高品質の水晶を低原価で製造することができる人工水晶の製造装置を提供する。
【解決手段】人工水晶育成炉本体容器21の下部領域21bにおいてアルカリ溶液で溶融した原料水晶30を、また、該本体容器21の上部領域21aにおいて育成枠8に配設した種子水晶3に原料水晶30を再結晶させて人工水晶を育成する人工水晶の製造方法及び装置20において、該種子水晶3を前記容器21の鉛直線を中心として所定角度傾け、かつ、反時計回り、または時計回りに回転らせん状に配設し、さらに前記種子水晶3を製品用種子水晶と、該製品用種子水晶と異なるカットの種子水晶から構成して、同じ前記人工水晶育成炉本体容器21内に同時に配置して人工水晶を育成することを特徴とする人工水晶の製造方法及び装置。 (もっと読む)


【課題】測定できる試験センサーの作成方法を提供する。試験場所を選ばず、様々な環境下で鉱物(ミネラル)や金属の結晶成長試験や結晶溶解速度測定が迅速・簡易に行なえるようにする。また、μmオーダーでの簡易な測定に適用可能とする。
【解決手段】耐熱・耐薬品性にすぐれた樹脂シート例えばPFAテフロン(登録商標)シート1の表面に試験対象となる鉱物又は金属の粒子2,3を加熱下に埋め込み、必要に応じて研磨することで結晶成長・溶解速度試験用試験センサー5を作成する。PFAテフロン(登録商標)シートの表面に試験対象となる鉱物又は金属の粒子を埋め込んで成る結晶成長・溶解速度試験用試験センサーの表面形状を試験前後で測定し、試験前後の表面形状の差から鉱物又は金属の結晶成長速度もしくは溶解速度を求めるものである。 (もっと読む)


【課題】結晶性が良好な窒化物単結晶を速い速度で成長させる方法を提供する。
【解決手段】シード、窒素元素を含有する溶媒、周期表13族金属元素を含む原料物質、および前記溶媒の1.5〜15mol%の量の鉱化剤を入れたオートクレーブ内の温度および圧力を、前記溶媒が超臨界状態および/または亜臨界状態となるように制御して前記シードの表面にアモノサーマル法により窒化物単結晶を成長させる。 (もっと読む)


【課題】合金形態の半導体結晶、その製造方法及び有機電界発光素子を提供する。
【解決手段】本発明に係る半導体結晶の製造方法は、(a)1種以上の12族金属前駆体を分散剤及び溶媒と混合し、これを加熱して12族金属前駆体溶液を得る段階と、(b)1種以上の16族元素前駆体をこれと配位可能な溶媒に溶解して16族元素前駆体溶液を得る段階と、(c)前記1種以上の12族金属前駆体溶液と1種以上の16族元素前駆体溶液とを混合して反応させた後、結晶を成長させる段階と、を含み、前記結晶のサイズ分布を表す光励起発光スペクトルの半値幅が50nm以下、かつ、発光効率が30%以上であり、前記12族金属前駆体溶液、及び前記16族元素前駆体溶液の濃度は0.001Mないし2Mであり、前記(a)段階において、加熱が100ないし400℃であり、前記(c)段階において、反応温度は50℃ないし400℃であることを特徴とする。 (もっと読む)


【課題】大口径のC面を有する窒化物半導体や、m軸方向に厚い窒化物半導体を効率よく簡便に製造することができる実用的な製造方法を提供すること。
【解決手段】六方晶系の結晶構造を有するシード、窒素元素を含有する溶媒、周期表13族金属元素を含む原料物質、及び鉱化剤を入れたオートクレーブ内の温度および圧力を、前記溶媒が超臨界状態及び/又は亜臨界状態となるように制御して前記シードの表面にアモノサーマル的に窒化物半導体を結晶成長させる工程を含む窒化物半導体の製造方法において、前記シード上のm軸方向の結晶成長速度を前記シード上のc軸方向の結晶成長速度の1.5倍以上にする。 (もっと読む)


【課題】より速い結晶育成速度で、高品質かつ高純度の結晶を作成することができる窒化物単結晶の製造方法、窒化物単結晶、基板およびデバイスを提供する。
【解決手段】III族元素を含む原料と、MeX(ここで、MeはB,Al,GaまたはInであり、XはF,Cl,BrまたはIであり、nは1〜3の整数である)を含む組成の鉱化剤と、アンモニアと、III族窒化物から成る種結晶32とを、反応容器11に入れる。反応容器11の内部で、460℃〜600℃の温度および80MPa〜150MPaの圧力で、アモノサーマル法により、種結晶32の表面に窒化物単結晶を成長させる。反応容器11は、Pt、Ir、Au、Ti、V、Zr、Nb、Ta、W、または、これらのうちの複数種類の元素から成る合金で、内壁面11bがライニングまたはコーティングされている。 (もっと読む)


【課題】エレクトロニクス製品、および/または、オプトエレクトロニクス製品に利用するGaNデバイスを加工する基板として、大きく、高純度で、低コストの単結晶半絶縁性のガリウムナイトライドを提供する。
【解決手段】およそ5ミリメーターよりも長い結晶構造の基板部材と、他の結晶構造を実質的に保有しない特徴のウルツ鉱型構造と、前記他の結晶構造の体積は、ウルツ鉱型構造の体積のおよそ1%以下であって、不純物濃度がおよそ1015 cm-1よりも大きいLi、Na、K、Rb、Cs、Mg、Ca、F、Clの少なくとも一つであって、およそ107Ω-cmよりも大きい電気抵抗であることを特徴とする結晶構造を含むガリウムナイトライド。 (もっと読む)


【課題】良好なサーモクロミック特性を有する二酸化バナジウム(VO)の単結晶微粒子、及びその製造方法を提供すること。
【解決手段】サーモクロミック特性を有する二酸化バナジウム(VO)の単結晶微粒子の製造方法であって、バナジウム(V)を含む物質Aと、ヒドラジン(N)またはその水和物(N・nHO)と、水とを含み、二酸化チタン(TiO)の粒子を実質的に含まない溶液を水熱反応させることにより単結晶微粒子を得ることを特徴とする。 (もっと読む)


【課題】速い育成速度と高い結晶品質とを両立することができる、アモノサーマル法による窒化物単結晶の製造方法を提供する。
【解決手段】耐腐食性オートクレーブ3内で、超臨界又は亜臨界状態にあるアンモニアの存在下、少なくとも1種類の窒化物多結晶を原料6として用い、かつ、少なくとも1種類の酸性鉱化剤をアンモニアに添加して、アモノサーマル法により窒化物多結晶から窒化物単結晶を製造する方法において、オートクレーブ3内には、窒化物多結晶を配置する部位9と、種結晶7を用いて窒化物単結晶を育成する部位10とが存在しており、種結晶7を用いて窒化物単結晶を育成する部位10の温度T1は、650℃〜850℃であり、かつ、窒化物多結晶を配置する部位9の温度T2よりも、平均温度で、高く保持され、そして耐腐食性オートクレーブ3内の圧力は、40MPa〜250MPaに保持されている。 (もっと読む)


【課題】シールド部の材料を強固にすることにより、繰り返し使用可能回数を向上させた、13族元素窒素化合物の結晶を製造するための圧力容器の提供。
【解決手段】温度600℃〜850℃、及び圧力30MPa〜250MPaのアンモニア雰囲気下で、13族元素窒素化合物の結晶を製造するための圧力容器であって、該アンモニア雰囲気に接する該圧力容器のシールド部の材料が、イリジウムと白金の合金又はイリジウム単体であり、ここで、イリジウムが、該シールド部の材料の全体に対して、20重量部〜100重量部で含有されていることを特徴とする圧力容器。 (もっと読む)


【課題】III族窒化物結晶性インゴットのアンモノサーマル成長のための方法を提供する。
【解決手段】III族窒化物結晶性材料を形成する方法であって、(a)実質的に酸素と水とを含まない鉱化剤をアンモノサーマル成長反応器1の反応チャンバーに提供することと、(b)該チャンバーを排気することと、(c)該III族窒化物結晶性材料を成長させる前に、バックエッチングされたシード結晶性材料11を提供することと、(d)該チャンバー内で該III族窒化物結晶性材料を成長させることとを含む、方法。 (もっと読む)


【課題】円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法を提供すること。
【解決手段】円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法であって、結晶化領域内にIII族窒化物シード結晶を装填し、強化剤領域内にIII族含有供給源を装填するステップと、アルカリ金属含有鉱化剤が酸素または水分に最小に曝露される態様で、高圧ベッセル内に鉱化剤を装填するステップと、高圧ベッセルを密封するステップと、高圧ベッセルを1×10−5ミリバールより低い圧力までポンプするステップと、高圧ベッセルをアンモニアで充填するステップと、結晶化領域の温度を500℃より上で傾斜をつけるステップと、に記載された温度条件を、結晶を成長させるのに十分長い間、維持するステップと、アンモニアを放出して結晶成長を停止させるステップと、高圧ベッセルを密封解除するステップとを含む、方法。 (もっと読む)


【課題】第1族金属イオンとアクセプタドーパントのイオンを含んでいるバルク単結晶ガリウム含有窒化物を得る方法及びそれで作られたエピタキシー基板とその基板で製造されるデバイスを提供する。
【解決手段】超臨界のアンモニア含有溶液から単結晶ガリウム含有窒化物のシード上への晶出(結晶化)工程から構成され、アクセプタドーパントイオンの超臨界のアンモニア含有溶液に対するモル比は少なくとも0.0001である。また、シード上で晶出させる工程後、950℃と1200℃の間の温度、望ましくは950℃と1150℃の間の温度で窒化物をアニールする工程から構成される。 (もっと読む)


【課題】従来技術では得られなかったc面配向した板状HAp単結晶を工業的規模で製造するための技術の提供。
【解決手段】Ca2+イオン、PO3−イオン、尿素及びウレアーゼを含む酸性水溶液を容器に入れ、該酸性水溶液と外気とが気液接触した状態で保持し、ウレアーゼによる尿素の加水分解による水溶液のpH上昇にしたがって、ヒドロキシアパタイトの結晶核を生成させ、さらに該結晶核をa軸及びb軸方向に成長させ、次いで前記水溶液に浮上している析出物を水溶液から分離採取し、次いで前記析出物に水熱処理を施して板状ヒドロキシアパタイト単結晶を得ることを特徴とする板状ヒドロキシアパタイト単結晶の製造方法。 (もっと読む)


【課題】高誘電率のセラミックス粒子と低誘電率のポリマーで構成されるフィルムキャパシタにおいて、セラミックス粒子の代わりに、比誘電率が1桁以上も高いと予測できる新規な構造の人工超格子ナノ粒子を提供する。
【解決手段】2種類以上の化学組成の異なる酸化物を溶液中で、化学組成の異なる粒子上にエピタキシャルに成長させることにより、球状の核の同心円上に化学組成の異なる酸化物の2種類以上を交互に積層し、球状とした人工超格子ナノ粒子であり、前記酸化物はチタン酸バリウム、またはチタン酸ストロンチウムを含み、前記酸化物のチタン源として、ジイソプロポキシドジアセチルアセトナート(Ti(iPrO)2(AcAc)2、TPA)を用いる。 (もっと読む)


【課題】転位密度が少なく、熱応力歪みが生じにくい六方晶ウルツ鉱型化合物単結晶を提供する。
【解決手段】結晶粒原料を主体とし、水熱成長開始時に1℃/min以上、6℃/min以下で昇温し、成長時における育成容器内の上部と下部で下部の温度差が3〜7℃の範囲で水熱成長することによって得られる結晶マイクロドメイン構造Dを有する六方晶ウルツ鉱型化合物単結晶であって、前記六方晶ウルツ鉱型化合物単結晶は、連続かつ一様な結晶格子を有するマトリックス領域M内に、該マトリックス領域Mとは結晶格子の配列が異なる島状の結晶マイクロドメインDを含み、該結晶マイクロドメインD内のc軸が、前記マトリックス領域Mのc軸と平行である。 (もっと読む)


【課題】遷移金属窒化物を、低温、低圧において得ることができる遷移金属窒化物の製造方法を提供する。
【解決手段】酸化タンタルと窒化リチウムを入れたグラファイトるつぼ1を圧力容器2に静置し、圧力容器2を電気炉3にセットする。次に、窒素ガス配管4に取付けられたバルブ42を介して真空ホースを接続し、真空ポンプにより圧力容器2内を減圧後、バルブ42を閉じ、バルブ41を開いて圧力容器2にアンモニアガス50を導入して加圧し、加熱反応させてリチウムアミドを生成させる。引き続き加熱反応させ、反応終了後、圧力容器2を冷却し、グラファイトるつぼ1の中の生成物6を取り出す。生成物6に1規定塩酸を加え未反応のリチウムアミドを溶解し、この溶液をろ紙によりろ過することにより固形生成物としてTaNを得る。 (もっと読む)


【課題】遷移金属窒化物を、低温、低圧において得ることができる遷移金属窒化物の製造方法を提供すること。
【解決手段】本発明は、遷移金属原料物質とリチウムアミドとを非酸素雰囲気中において反応させることにより遷移金属窒化物を得る、遷移金属窒化物の製造方法にある。上記非酸素雰囲気は、アンモニア雰囲気であることが好ましい。 (もっと読む)


1 - 20 / 61