説明

Fターム[4G146BA11]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 有機化合物(ハロゲン化炭化水素等) (2,653)

Fターム[4G146BA11]の下位に属するFターム

Fターム[4G146BA11]に分類される特許

101 - 120 / 451


リチウムイオン電池に関して、高容量シリコンベースアノード活性材料を説明する。これらの材料は、高容量リチウムリッチカソード活性材料と組み合わせると有効であることが示されている。補助リチウムが、少なくともいくつかのシリコンベース活性材料に関して、サイクリング性能を改良し、不可逆容量損失を減少させることが示されている。特に、シリコンベース活性材料は、導電性コーティング、例えば熱分解炭素コーティングまたは金属コーティングを備える複合材として形成することができ、複合材はまた、カーボンナノファイバおよび炭素ナノ粒子など他の導電性炭素成分と共に形成することができる。シリコンを含むさらなる合金も考察する。
(もっと読む)


担持されたタングステンカーバイド触媒は、タングステンカーバイドをその有効成分として、そしてメソ多孔性炭素をその担体として含み、タングステンカーバイドがメソ多孔性炭素の表面及びチャンネルに高分散しており、そしてタングステン元素の含量が、メソ多孔性炭素に対し30質量%〜42質量%の範囲である。この触媒は、含浸法により調製し得る。この触媒は、その高い反応性、選択性及び安定性の効力により、温度245℃、及び水素圧6MPaを含む熱水条件下で、セルロースのエチレングリコールへの直接触媒変換に使用し得る。 (もっと読む)


【課題】超硬合金やサーメットの基材と鋼等の相手材との接合において、基材と相手材とが強固に接合した接合体を得ることが可能な接合技術を提供する。
【解決手段】超硬合金またはサーメットの基材の少なくとも一表面に、カーボンナノチューブからなる層が形成されている複合材料であって、前記の複合材料は、超硬合金またはサーメットの成形体からなる基材を準備する基材準備工程と、基材の表面にカーボンナノチューブからなる層を形成するカーボンナノチューブ形成工程と、カーボンナノチューブを成形した基材を加熱して焼結する焼結工程とを有する製造方法により製造される。 (もっと読む)


【課題】ナノ炭素材料が大きい表面積を有し、かつ、基体に対し突出した構造を持つ、ナノ炭素材料複合基体及びその製造方法を提供する。
【解決手段】コバルト又はコバルト化合物からなる触媒を基体11表面に担持し、基体11を酸化雰囲気中で850℃以上1100℃以下の範囲で熱処理した後、基体11をオクタノールとオクタンチオールとの混合溶液15中で加熱することにより、節を有するファイバー状のナノ炭素材料12が基体11に生成する。合成の際、基体11を700℃以上900℃以下の範囲で加熱するとよい。 (もっと読む)


【課題】リチウムイオン二次電池負極材料として好適であり、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい炭素材料を提供する。また、該炭素材料を用いてなる電極材料及びリチウムイオン二次電池負極材料を提供する。
【解決手段】内部に空隙があり、かつ、リチウムと合金を形成する金属を含有する金属内包中空炭素粒子を含有する炭素材料。 (もっと読む)


【課題】カーボンナノチューブを含む熱伝導体によって、被熱処理体に、熱を均一かつ安定して伝導すること。
【解決手段】金属触媒8が外周面に被覆された複数の円筒部T1〜T3と、金属触媒が非被覆の円筒部T4を、円板状基板1面に略垂直かつ同心円状かつ入れ子状に配置して熱伝導体用構造体を得た後、この熱伝導体用構造体を、CVD用真空チャンバ内に配置する。そして、CVD法によってカーボンナノチューブ前駆体である炭素材を前記金属触媒8上に形成し、それと同時に熱伝導体用構造体のラジアル方向に電場及び/又は磁場を印加する(参照符号9A、9Bが電極又は磁極を指す)。その結果、多数本のカーボンナノチューブCNTが、円筒部T1〜T3の外周からラジアル方向に向けて配向・成長し、かつ、鉛直方向に形成されたサセプタ10(熱伝導体)を得る。 (もっと読む)


【課題】機械的な振動に対する高い減衰性能を有する高分子ナノ複合材料を提供する。
【解決手段】 高分子材料からなる母材と、母材に分散した複数のカーボンナノウォールとを含む。 (もっと読む)


【課題】初期充放電容量をより向上させ得るリチウムイオン二次電池電極用の炭素材料が求められている。
【解決手段】メタクレゾールパープルを600〜3000℃で加熱して得られる炭素材料。該炭素材料をリチウムイオン二次電池の電極に用いれば、初期充放電容量を向上させることができる。また、リチウムイオンキャパシタの電極に用いれば、出力密度を向上させることができる。 (もっと読む)


【課題】非水系電解液を利用する蓄電デバイスの電極材料として有用な炭素多孔体を製造する方法を提供する。
【解決手段】本発明の炭素多孔体の製造方法は、カルボキシ基又はヒドロキシ基を有する含窒素複素環式化合物とアルカリ土類金属イオンとの混合物を不活性雰囲気下で焼成することにより焼成物を得たのち、焼成物中のアルカリ土類金属イオンに由来する成分を溶解可能な洗浄液で前記焼成物を洗浄してこの成分を除去することにより炭素多孔体の前駆体を生成し、前駆体とアルカリ金属イオンとの混合物を不活性雰囲気下で熱処理することにより熱処理物を得たのち、更に、熱処理物中のアルカリ金属イオンに由来する成分を溶解可能な洗浄液で熱処理物を洗浄してこの成分を除去することにより炭素多孔体を得る。 (もっと読む)


【課題】初期充放電容量をより向上させ得るリチウムイオン二次電池電極用の炭素材料が求められている。
【解決手段】フェニルフルオロンを600〜3000℃で加熱して得られる炭素材料。該炭素材料をリチウムイオン二次電池の電極に用いれば、初期充放電容量を向上させることができる。また、リチウムイオンキャパシタの電極に用いれば、出力密度を向上させることができる。 (もっと読む)


【課題】初期充放電容量をより向上させ得るリチウムイオン二次電池電極用の炭素材料が求められている。
【解決手段】α−ナフトールフタレインを600〜3000℃で加熱して得られる炭素材料。該炭素材料をリチウムイオン二次電池の電極に用いれば、初期充放電容量を向上させることができる。また、リチウムイオンキャパシタの電極に用いれば、出力密度を向上させることができる。 (もっと読む)


【課題】1つ以上のカーボン・ナノチューブを選択的に成長させる方法を提供する。
【解決手段】本方法は、上面を有する絶縁層を基板上に形成するステップと、絶縁層内にビアを形成するステップと、ビアの側壁及び底面を含め、絶縁層上に活性金属層を形成するステップと、ビアの内部での1つ以上のカーボン・ナノチューブの選択的な成長を可能にするために、イオン・ビームを用いて上面の部分にある活性金属層を除去するステップとを含む。 (もっと読む)


【課題】酸化還元可能なナノ粒子と、前記ナノ粒子を被覆する炭素材料からなるナノ複合材料が平均二次粒子径1μm以下で分散した水スラリー、ならびに、安価にかつ簡便な方法により当該水スラリーを製造できる方法を提供する。
【解決手段】茶成分を含有する水溶液に、酸化還元可能なナノ粒子と前記ナノ粒子を被覆する炭素材料からなるナノ複合材料を分散させてなる水スラリーにおいて、分散しているナノ複合材料の平均二次粒子径が1μm以下である水スラリー、ならびに、酸化還元可能なナノ粒子と当該ナノ粒子を被覆する炭素材料とからなるナノ複合材料を含む原料スラリーを粉砕し、粉砕された原料スラリーと茶成分を含有する水溶液とを混合する水スラリーの製造方法。 (もっと読む)


【課題】助触媒金属に対して触媒金属が量的に少なくても、その最表面に粒径均一に複数の触媒金属微粒子を析出させる。
【解決手段】真空チャンバ内に、炭素含有ガスに非反応の助触媒金属を導入すると共に、助触媒金属中に非金属元素を存在させ、次いで、炭素含有ガスに接触反応する触媒金属を導入し、次いで熱アニール処理を行うことで最表面に触媒金属微粒子を析出させる。 (もっと読む)


本発明方法は、溶融ガラス繊維コアを提供することと、ガラス繊維コアがその軟化温度以上で、溶融ガラス繊維コア上に遷移金属酸化物を含む複数のナノ粒子を配置することと、これによって、ナノ粒子を含んだガラス繊維を形成することを含んで構成した。前記複数のナノ粒子は、前記ガラス繊維コアの表面に埋め込まれている。本発明方法は、溶融ガラスと複数のナノ粒子との混合物を提供することを含んで構成した。前記複数のナノ粒子は、遷移金属を含む。前記方法は、複数のナノ粒子がガラス繊維の至るところに埋め込まれたナノ粒子を含んだガラス繊維を形成することを、更に、含んで構成した。 (もっと読む)


グラフェンを製造する工程が開示される。前記工程は、溶媒中の金属アルコキシド溶液(102)を分解装置へ導入し、前記分解装置は、前記金属アルコキシドを分解してグラフェンを生成するために十分な高温を持つ第1の領域を含む。
(もっと読む)


【課題】基板上に成膜するナノ炭素材料への電界集中を好適に行なうことの出来るナノ炭素材料複合基板の製造方法を提供することを目的とする。
【解決手段】本発明のナノ炭素材料複合基板製造方法は、ナノ炭素材料を形成前に触媒層の一部を剥離しスポットを形成する。ナノ炭素材料は触媒層の残存部から生成されることから、生成されたナノ炭素材料の極近傍にナノ炭素材料の存在しないスポットが存在する。このため、電界の集中しやすいナノ炭素材料よりなるエッジ部位を多数備えたナノ炭素材料複合基板を製造することが出来る。 (もっと読む)


本発明は、(A)少なくとも以下の成分;(a1)モノヒドロキシ芳香族化合物および/またはポリヒドロキシ芳香族化合物、および(a2)アルデヒド、および(a3)触媒を反応器中に導入し、その際、反応温度Tが75〜200℃であり、かつ、圧力が80〜2400kPaであり、かつ、0.001〜1.000.000sの時間tの間に、これらの成分を触媒の存在下で互いに反応させて組成物を得て、その際、前ゲル生成物が得られ、かつ、(B)少なくとも以下の成分;(b1)結晶またはアモルファスの形のサブミクロンのケイ素粉末を、工程(A)中または工程(A)後に得られた生成物中に導入し、かつ引き続いて、(C)工程(B)後に得られた生成物を、(a3)塩基性触媒の場合には酸から選択された中和剤中に導入するか、あるいは(a3)酸性触媒の場合にはアルカリから選択された中和剤中に導入し、その際、微粒子状の生成物が得られ、かつ、(D)工程(C)中または工程(C)後に得られた生成物を乾燥させ、かつ、引き続いて(E)工程(D)後に得られた生成物を500〜1200℃の温度で炭化する工程を含む、ナノ構造化ケイ素−炭素−複合材料を製造するための方法、その複合材料自体、リチウムイオンセルおよびバッテリのためのアノード材料としてのその使用、ならびにそのリチウムイオンセルおよびバッテリに関する。 (もっと読む)


【課題】炭素原料の前処理を行うことなく、得られる活性炭の物性を高度に制御できる活性炭の製造方法を提供する。
【解決手段】本発明の活性炭の製造方法は、炭素原料と融点が250℃以下の有機化合物を混合した後、アルカリ賦活することを特徴とする。 (もっと読む)


【課題】炭素元素の線状構造体を用いた熱伝導度及び電気伝導度が極めて高いシート状構造体を提供する。
【解決手段】基板12上に炭素元素の線状構造体16を形成し、線状構造体16間に充填層18を形成し、充填層18及び線状構造体16を複数枚に切断し、切断された充填層18及び線状構造体16をそれぞれ含む複数のシート状構造体10を形成する。このように形成したシート状構造体10の線状構造体16の両端部は、開端している。 (もっと読む)


101 - 120 / 451