説明

Fターム[4G146BA11]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 有機化合物(ハロゲン化炭化水素等) (2,653)

Fターム[4G146BA11]の下位に属するFターム

Fターム[4G146BA11]に分類される特許

141 - 160 / 451


【課題】生産性及び経済性が高められた、アズルミン酸炭化物及びその製造方法を提供すること。
【解決手段】アズルミン酸を不活性ガス雰囲気下、反応器中で加熱処理することにより、アズルミン酸炭化物を製造する方法において、反応器中における不活性ガスの平均滞留時間が0.5分以上となるようにアズルミン酸を加熱処理する。 (もっと読む)


【課題】高導電率と高透明性を有するカーボンナノチューブフィルムを製造する方法を提供する。
【解決手段】本発明は、透明導電性カーボンナノチューブフィルムの製造方法、前記方法により製造されるカーボンナノチューブフィルム、および該カーボンナノチューブフィルムを含むカーボンナノチューブ素子を提供する。通常の濾過法により得られたカーボンナノチューブフィルムに比べ、本発明の方法で得られたカーボンナノチューブフィルムは透明性が高く、シート抵抗が著しく低くなる。 (もっと読む)


本発明は、過酸化水素が還元の副生成物として生じない、アルカリ性溶液において窒素ドープカーボンナノチューブの存在下で分子酸素の還元のための電気化学法に関する。
(もっと読む)


【課題】 ターゲット物質の歩留りを向上させ、無駄なく簡単に薄膜を形成するためのターゲット物質含有液体の製造方法、ターゲット物質を含有する薄膜の形成方法、ターゲット物質含有液体を提供する。
【解決手段】 ターゲットを用いたプラズマスパッタリング法を用い、前記ターゲットが配置された処理室と同一の処理室内に配置された液体材料に向けてターゲット物質をスパッタリングすることにより、前記ターゲット物質を前記液体材料中に分散させることを特徴とするターゲット物質含有液体の製造方法である。 (もっと読む)


【課題】原料炭素成分を含む混合物を触媒粒子に接触させる方法において、カーボンナノチューブの長尺化を図り易いカーボンナノチューブの製造方法を提供する。
【解決手段】原料炭素成分を含む混合物を触媒粒子55に接触させて、混合物中の原料炭素成分により触媒粒子55からカーボンナノチューブ57を成長させる製造方法であり、混合物中の原料炭素成分以外の成分や触媒活性を低下する成分を固定化するための固定化材料41に混合物を接触させることで、混合物中の原料炭素成分以外の成分や活性低下成分を減少させて原料炭素成分の存在割合を増加させた後、カーボンナノチューブ57を成長させる。 (もっと読む)


【課題】ナノ炭素材料が基体に対し突出した突起構造を持ち、特に好ましくはその突起の密度が比較的低い、ナノ炭素材料複合体及びその製造方法を提供する。
【解決手段】コバルト又はコバルト化合物からなる触媒を基体11表面に担持し、基体11を酸化雰囲気中で850℃以上1100℃以下の範囲で熱処理した後、基体11をオクタンチオール15中で加熱することで、基体11上にファイバー状のナノ炭素材料12を合成する。合成の際、基体11を700℃以上900℃以下の範囲で加熱するとよい。 (もっと読む)


【課題】大気中でも安定した複合材を容易に得ることができる複合材の製造方法及び半導体装置の製造方法を提供する。
【解決手段】基体1上に、複数の表面酸化微粒子2を堆積する。表面酸化微粒子2の直径は10nm以下であることが好ましく、例えば0.5nm〜5nm程度である。表面酸化微粒子2は、グラファイト層を形成する際の触媒として機能し得るコバルト等の強磁性体金属微粒子とこの表面を覆う酸化膜から構成されている。次いで、炉内に基体1及び表面酸化微粒子2を挿入し、炉内を高真空にして基体1を510℃程度まで昇温する。この結果、基体1及び表面酸化微粒子2に付着していた異物等が除去される。その後、炉内の雰囲気を炭化水素系ガス雰囲気にする。この結果、表面酸化微粒子2の表面に存在した酸化膜が還元され、更に、強磁性体金属微粒子の表面にグラファイトが析出し、グラファイト被覆微粒子3が強磁性体複合微粒子として得られる。 (もっと読む)


【課題】導電性のカーボン膜を高い生成レートで得ることができる、カーボン膜の製造方法を提供する。
【解決手段】基体11をオクタンチオール15中で加熱して基体11上にグラファイト成分を含む導電性カーボン膜12を合成する。合成の際、基体11を700℃以上、特に850℃以上で加熱するとよい。 (もっと読む)


【課題】元来有する細孔機能を維持しながら担持された金属が有する機能を発現可能なミクロポーラス炭素系材料を提供する。
【解決手段】ミクロポーラス炭素系材料5であって、0.7nm以上2nm以下の範囲内の3次元の長周期規則構造と、ミクロ細孔2aとを有するミクロポーラス炭素系材料であって、ミクロ細孔2a表面に遷移金属4が担持されている。この材料を、遷移金属を含む多孔質材料の表面及びミクロ細孔内に有機化合物を導入し、この有機化合物を化学気相成長法により炭化して遷移金属を含むミクロポーラス炭素系材料と多孔質材料の複合体を得る工程と、多孔質材料を除去する工程とを有する方法、又は多孔質材料の表面に有機化合物を導入して化学気相成長法によりミクロポーラス炭素系材料を得て、このミクロポーラス炭素系材料を遷移金属塩溶液中に浸漬・含浸し、ミクロポーラス炭素系材料の表面に遷移金属を担持する方法により得る。 (もっと読む)


固体有機材料を炭素または活性炭素へ変換するための方法および装置である。固体有機材料の処理は、無酸素かる完全に吸熱状態下でなされる。装置は、圧力釜(1)、圧力釜の保護被服断熱(2)、有孔または無孔回転ドラム(3)、密封皿状端(4)、回転シャフト(5)、ベルトまたはチェーン駆動を有するギヤモータ(6)、超高温スチームを生成するスチーム超高温ヒータ(7)、超高温スチームを制御する少なくとも1つの入口弁(8)、少なくとも1つの供給パイプ(9)、傾斜または回転支持体(10)、少なくとも1つの円筒状ローラ(11)、開口または閉口扉端(12)、供給または除去ポート(13)、連結シュート(14)、少なくとも1つの圧力安全弁(15)、ガス排出パイプ(16)、少なくとも1つの出口弁(17)、生成された反応ガスを処理するガス処理ユニット(18)、少なくとも1つの圧力計(19)、および、少なくとも1つの温度計(20)を備える。圧力釜は、傾斜または回転支持体上に支持されたその付属品とともに傾斜し、固体有機材料が、回転ドラム内に供給され再びまっすぐにされる。ガスまたはスチームが、圧力釜内の全雰囲気が排出されるまで圧力釜内に供給され、超高温スチームが回転ドラム内に継続的に供給される。回転ドラムは、ギヤモータにより定速回転され、生成された反応ガスが圧力釜から固体有機材料が炭素または活性炭素へ変換されるガス処理ユニットへ移される。
(もっと読む)


【課題】成長させるカーボンナノチューブの長尺化を図り易いカーボンナノチューブの製造方法を提供する。
【解決手段】原料物質の熱分解により原料炭素成分を含む分解混合物を生成させ、分解混合物を触媒粒子55に接触させて、分解混合物中の原料炭素成分により触媒粒子55からカーボンナノチューブ57を成長させる製造方法であり、触媒粒子55の活性低下成分を固定化するための固定化材料54を、触媒粒子55の配置領域に配置し、分解混合物を固定化材料54と触媒粒子55とに接触させて分解混合物中の活性低下成分を固定化材料54に固定化しつつ、カーボンナノチューブ57を成長させる。 (もっと読む)


【課題】高密度、高配向のナノ炭素材料を、高純度、高速で、かつ、容易に得られる合成方法を提供する。
【解決手段】コバルト又はコバルト化合物からなる触媒を基体11の表面に担持し、オクタノール15中で基体11を加熱して基体11上に少なくとも繊維状ナノ炭素材料12を生成する。基体11を、550℃〜850℃の範囲で加熱するとよい。 (もっと読む)


【課題】 触媒粒子の凝集や移動を防いだカーボンナノチューブ成長用基板及びその製造方法、並びにこれを用いたトランジスタを提供する。
【解決手段】カーボンナノチューブ成長用基板1は、カーボンナノチューブ成長用触媒粒子11をそれぞれ散在した状態で含有する固定層12を基板S上に備え、前記固定層は、カーボンナノチューブ成長用触媒以外の材料から構成され、かつ、前記カーボンナノチューブ成長用触媒粒子のうちの少なくとも1つの上部が前記固定層の上面に露出している。このカーボンナノチューブ成長用基板を用いてトランジスタを得る。また、このカーボンナノチューブ成長用基板を作製する。 (もっと読む)


【課題】リン酸マンガンリチウム等の活物質粒子上にカーボン等の導電補助剤を表面に配してなるリチウム二次電池用電極材料を用いた電池の高率放電特性を向上させる。
【解決手段】前記加熱炉として回転式焼成炉(ロータリーキルン)等を用いて活物質粒子又はその前駆体の粉体を撹拌しながら、メタノール等のカーボン原料を加熱炉に導入することにより、活物質粒子上にカーボンを配する。前記リン酸マンガンリチウム化合物の前駆体から前記リン酸マンガンリチウム化合物を生成する工程と、前記電気化学的活性材料の粒子表面に導電補助材料が配される工程とが同時に行われることを特徴とすることができる。 (もっと読む)


本発明は、向上された摩擦係数及び/又は良好な接触抵抗及び/又は良好なフレッチング腐食耐性及び/又は良好な磨耗耐性及び/又は良好な変形性を有する、金属テープ上の金属/カーボンナノチューブ(CNT)−及び/又はフラーレン複合体コーティング、又は事前に打ち抜きされた金属テープに関する。本発明は、更に、本発明によってコーティングされた金属テープの製造方法に関する。 (もっと読む)


【課題】比容量が大きく、大電流取得が可能な放電特性に優れ、かつ劣化が少ないリチウム電池を実現するための正極を提供する。
【解決手段】導電助剤は、リチウム金属酸化物の粒子表面上に炭素をすべて直接形成し被覆してなるもので、正極活物質であるリチウム金属酸化物粒子上に炭素を直接形成し被覆する化学気相成長法により、炭素を形成するための原料を有機化合物の溶液とし、これとともに不活性ガスもしくは低反応性ガスをキャリアガスとして、正極活物質粒子に供給して炭素を形成するリチウム電池用正極とする。 (もっと読む)


【課題】塩基触媒やアニオン交換材料などの用途に好適な窒素原子含有官能基を含有する炭素質材料およびその製造方法、ならびに該炭素質材料を用いた塩基触媒およびアニオン交換材料を提供すること。
【解決手段】本発明の炭素質材料は、所定の構成炭素原子と窒素原子含有官能基とが非縮合型の共有結合を介して結合した構造を有する、窒素原子含有官能基を有する芳香族炭化水素を、ルイス酸の存在下で加熱処理する得る工程を経て製造される。 (もっと読む)


高品質なカーボン単層ナノチューブ(SWNT)を合成する方法およびプロセスを提供する。前記方法により、触媒単位重量当たりの炭素前駆体量および輸送ガス量を最適化する手段を提供する。780℃にて、約4.2×10−3モルCH/秒−g(Fe)の流量で、炭素前駆体ガスを担体に担持した触媒に接触させたとき、約20%の変換効率を達成できる。また、炭素前駆体ガスの流量を約1.7×10−2モルCH/秒−g(Fe)以上にすると、品質が向上し、より速くカーボンSWNTが成長する結果になった。一方、炭素原子の供給速度を遅くすると(約4.5×1020C原子/秒−g、すなわち6.4×10−4モルCH/秒−g(Fe))、欠陥の多いナノチューブが生成する結果になった。 (もっと読む)


【課題】CVD法を適用してCNTを効率よく製造する装置および方法を提供する。
【解決手段】本発明により提供されるCNT製造装置1は、下流側10bが低くなるように傾斜させて回転可能に配置された筒体10と、筒体10の内側に形成されたチャンバ11に触媒粉末Pを供給する触媒供給部30および炭素源蒸気Vを供給する炭素源供給部40と、チャンバ11の少なくとも一部範囲に設定された反応ゾーン12をCNT生成温度に加熱可能なヒータ7とを備える。筒体10の内周壁には凸部が設けられており、筒体10を回転させることにより触媒粉末Pが上記凸部に引っ掛かって持ち上げられては落下することを繰り返しながら上流側から下流側へと移動するように構成されている。 (もっと読む)


【課題】連続操作による合成効率が高いフッ化カルボニルの製造方法を提供すること。
【解決手段】本発明に係るフッ化カルボニルの製造方法は、下記一般式(1)で示されるパーフルオロポリエーテル化合物の少なくとも1種類から選ばれる化合物からなる原料を、キャリアガスとして空気を用いて、連続的に反応管内に誘導し、該反応管内を通過する間に前記化合物を350℃〜530℃の温度で熱分解することを特徴とする。
一般式(1)


〔一般式(1)において、Rfは炭素数1〜3のパーフルオロアルキル基であり、aは1〜3の自然数であり、bは1〜2の自然数であり、cは0〜30までの整数である。〕 (もっと読む)


141 - 160 / 451