説明

Fターム[4H001XA20]の内容

発光性組成物 (40,484) | 母体構成元素 (22,982) | Ca (1,225)

Fターム[4H001XA20]に分類される特許

201 - 220 / 1,225


【課題】これからのLED照明のさらなる実用化を図る時に要求される近紫外光から可視光、すなわち波長300〜500nmの範囲において、より高効率、高輝度に発光する橙色蛍光体、およびその製造方法を提供する。
【解決手段】EuSiSと同じ単斜晶系の結晶構造を有し、組成式(Ca1−y−zSrBa2−xEuSiSで表される、Eu濃度xが0<x≦0.2の範囲、Sr濃度yが0≦y≦0.3の範囲、Ba濃度zが0<z≦0.6の範囲であることを特徴とする近紫外線から可視領域の光で励起される橙色蛍光体。 (もっと読む)


本発明は、青色放射LEDと、前記LEDの放射波長で励起される第1の蛍光体層であって、蛍光体が500nm乃至560nmの範囲内の放射波長を有する第1の蛍光体層と、0.24乃至0.35の間の範囲での色点u'及び放射スペクトルのうちのλp>600nmの蛍光体層のピーク放射を有する第2の蛍光体層と、を含む発光装置に関し、特に、緑色放射ルミネッセンスセラミック材料及び広い放射スペクトルを有する第2の蛍光体材料の組合わせを含む蛍光体変換LEDに関する。第2の蛍光体材料は、一般式M1-x-y-zSi1+zAl1-zN3-zOz :Eu2+xCe2+yの複合物を含み得、MはCa、Sr、及びこれらの混合物からなる群から選択されており、0.0001≦x≦0.005、0.001≦y≦0.05、及び0≦z≦0.25
である。 (もっと読む)


【課題】量子効率が高く、温度特性の良好な蛍光体を製造する方法の提供。
【解決手段】斜方晶系に属し、一般式(1):
(M1−x3−y3+z13−z2+u21−w (1)
で表わされる組成を有するSrAlSi1321属結晶を含む蛍光体の製造方法であって、 前記元素Mの窒化物または炭化物、前記元素Mの窒化物、酸化物、または炭化物、前記元素Mの窒化物、酸化物、または炭化物、および前記発光中心元素Rの酸化物、窒化物、または炭酸塩を原料として用い、これらを混合してから焼成することを特徴とする、蛍光体の製造方法。 (もっと読む)


【課題】残光時間が短く、発光強度が高いテルビウムをドープしたリン酸塩緑色発光材料を提供する。また、製造工程が簡単で、汚染がなく、制御が容易で、且つ産業化生産に有利である、その緑色発光材料の製造方法を提供する。
【解決手段】本発明に係るテルビウムをドープしたリン酸塩緑色発光材料の一般式はMRE1−xTb(PO)で、ここで、Mはアルカリ土類金属で、REは希土類金属で、x=0.001〜1である。本発明に係るテルビウムをドープしたリン酸塩緑色発光材料の製造方法は、以下のステップを含む。一般式MRE1−xTb(PO)における各元素のモル比に応じて、アルカリ土類金属イオン源化合物、リン酸基イオン源化合物、希土類金属イオン源化合物及びTb3+イオン源化合物を秤量し、前記リン酸基イオン源化合物はモル比で10%〜30%過量であり、そして、各源化合物を研磨し混合させ、混合物に対して焼成予備処理を行い、冷却させ、次に、焼成物を取出して研磨し、研磨された産物を還元雰囲気中で焙焼し、冷却させた後、テルビウムをドープしたリン酸塩緑色発光材料を得る。 (もっと読む)


【課題】高い光束と高い演色性とを両立する発光装置、特に暖色系の白色光を放つ発光装置を提供する。
【解決手段】本発明は、窒化物蛍光体を含む蛍光体層3と発光素子1とを備え、発光素子1は360nm以上500nm未満の波長領域に発光ピークを有し、窒化物蛍光体は発光素子1が放つ光によって励起されて発光し、窒化物蛍光体が放つ発光成分を出力光として含み、窒化物蛍光体は、Eu2+で付活され、かつ、組成式(M1-xEux)AlSiN3で表される蛍光体であり、MはMg、Ca、Sr、Ba及びZnから選ばれる少なくとも1つの元素であり、xは式0.005≦x≦0.3を満たす数値である発光装置である。 (もっと読む)


【課題】発光素子からの紫外光または青色光にて高効率に発光する蛍光体を利用する発光装置であって、発光色の設定が容易でありかつ輝度の高い発光装置を提供する。
【解決手段】発光装置(10)は、1次光を発する発光素子(11)と、1次光の一部を吸収してその1次光の波長以上の波長を有する2次光を発する波長変換部(12)とを含み、その波長変換部は互いに異なる光吸収帯域を有する複数種の蛍光体(13、14、15)を含み、これら複数種の蛍光体の少なくとも1種は他の少なくとも1種で発せられた2次光を吸収し得る吸収帯域を有することを特徴としている。 (もっと読む)


本発明は、式(I) A2−0.5y−xEuSi8−y(I)、式中、Aは、Ca、Sr、Baから選択される1種または2種以上の元素を表し、xは、0.005〜1の範囲の値を表し、およびyは、0.01〜2の範囲の値を表す、で表される化合物、それらの混合物、それらの蛍光体および混合物の調製のための方法ならびにそれらの変換蛍光体としての使用に関する。 (もっと読む)


【課題】太陽光、キャンドル光、または白熱電球により生成される光の所定のスペクトル分布に一致する演色を達成するように柔軟に設計可能な照明システムを提供する。
【解決手段】発光デバイス10は、互いに異なるスペクトル出力を有する少なくとも2個のLEDダイ14、16と、LEDダイのうちの少なくとも1つからのスペクトル出力を受け取ってそれに応答して発光デバイスのスペクトル出力の成分として蛍燐光体出力を放出するように配置された1種以上の蛍燐光体を含む蛍燐光体材料18と、を含む。特定の構成では、複数のLEDダイおよび蛍燐光体材料は、(i)1350°K〜1550°Kの範囲内の色温度、(ii)2400°K〜3550°Kの範囲内の色温度、および(iii)4950°K〜6050°Kの範囲内の色温度の中から選択される色温度を有する白色光出力を生成するように配置される。 (もっと読む)


【課題】熱蛍光グローピーク温度をより高い温度領域にシフトさせるとともに、結晶欠陥に起因する励起電子の基底状態への遷移を抑制して、放射線の照射直後の励起状態が長時間に亘って維持する。
【解決手段】母材であるCaFに、0.1mol%のTbF、0.5mol%のGdF及び0.1mol%のSmFを混合してこれらを溶融し、このCaFの単結晶を成長させた。この単結晶にX線を照射し、グローピーク強度を評価したところ、80℃付近(低温領域)に小さいピークと、400℃付近(高温領域)に大きいピークが確認できた。このように、低温領域のピークを高温領域のピークよりも相対的に小さくすると、添加したTb電子のFセンタが安定したものとなり、時間経過に伴うFセンタからの基底状態へのエネルギー遷移が生じにくくなる。このため、X線等の放射線の照射直後の励起状態が長時間に亘って維持することができる。 (もっと読む)


少なくとも1種のカチオンMと付活剤Dとを有する、窒化物系蛍光体又は酸窒化物系蛍光体の種類からなる新規の蛍光体は、前記カチオンの割合xがCuにより置き換えられている。この蛍光体は光源のために適している。
(もっと読む)


【課題】不要となり回収された無アルカリガラスを資源として有効利用可能な用途を提供し、さらに、強い発光強度を示す蛍光材料を提供する。不要となり回収された無アルカリガラスを原料として用い、強い発光強度を有する蛍光材料の製造方法を提供する。
【解決手段】無アルカリガラスと、希土類原子とからなる蛍光材料であって、好ましくは、無アルカリガラス95〜99.99重量%と、希土類原子0.01〜5重量%とからなる蛍光材料、ならびに、無アルカリガラスと、希土類原子を含む化合物とを、混合し粉砕することを特徴とする蛍光材料の製造方法。 (もっと読む)


【課題】シリコン、アルミニウム、ストロンチウム、ユーロピウム、窒素および酸素を有する化合物を用いることで、発光強度が強く、輝度が高い赤色蛍光体を得ることを可能にし、その赤色蛍光体を用いることで白色LEDの色域を広くすることを可能にする。
【解決手段】元素A、ユーロピウム(Eu)、シリコン(Si)、炭素(C)、酸素(O)、および窒素(N)を、下記組成式(2)の原子数比で含有する赤色蛍光体。ただし、組成式(2)中の元素Aは、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、またはバリウム(Ba)の少なくとも1つであり、
組成式(2)中のm、x、z、nは、3<m<5、0<x<1、0<z<9、0<n<10なる関係を満たす。
【化6】
(もっと読む)


【課題】化学的、熱的に安定を有し、且つ可視光によってフォトクロミズムを示すフォトクロミック材料を実現する。
【解決手段】本発明の物質は、下記式(1)
Ba(a−b)CaMgSi …(1)
(式中、1.8≦a≦2.2、0≦b≦0.1、1.4≦c≦3.5、1.8≦d≦2.2、e=(a+c+2d)であり、Mは、Eu、Nd、Li、S、C、Ti、Al、V、Mn、Cr、Fe、Cu、Ni、Co、Ge、Zn、Ga、Zr、Y、Nb、In、Ag、Mo、Sn、Sb、Bi、Ta、W、La、Ce、Pr、Nd、Sm、Gd、Eu、Er、Ho、Tb、Tm、Yb、Lu、P、Cd、及びPbからなる群から選択される少なくとも1つの元素であり、0≦fである。)
で表され、上記物質を構成する各元素を含む原料とホウ酸との混合物を焼成する工程を含む方法によって得られたものである。 (もっと読む)


【課題】本発明は光変換効率及び演色指数が高い紫色LEDを用いた白色発光装置を提供する。
【解決手段】紫色LEDを用いた白色発光装置は、筐体と、筐体内に設けられた支持板と、支持板上に少なくとも一つ設けられた発光波長210nm〜410nmの紫色LED半導体光源と、筐体内に設けられ且つ紫色LED半導体光源と対向するEuイオンドープ高シリカ発光ガラス板と、高シリカ発光ガラス板の紫色LED半導体光源と対向する一面と反対側の面に設けられ且つ黄色蛍光粉末と赤色蛍光粉末との混合物、緑色蛍光粉末と赤色蛍光粉末との混合物、黄色蛍光粉末からなる群から選ばれる一種から形成される蛍光粉末層とを含む。 (もっと読む)


本発明は、透明なエポキシまたはシリコーン樹脂(1)をベースとする、特に、好ましくは白色光を発光する、エレクトロルミネセント構成要素(3)における使用のための成型構成物に関する。成型構成物は、ガラスまたはシリカ粒子(2)の使用により、水分子の水分に対する拡散障壁として振る舞う。 (もっと読む)


【課題】優れた吸収率を示す緑色蛍光体を提供する。
【解決手段】 一般式:MGa24Eu2+(但し、Mは、Sr、Ba及びCaのうちの一種或いは二種以上の組合せからなる元素。Eu2+は発光中心。)で示される結晶を含む緑色蛍光体であって、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算10%の粒子径(D10)が4.5μm〜30μmであることを特徴とする緑色蛍光体を提案する。 (もっと読む)


青色(多Sr)または黄色(多Ca)の残光性蛍りん光体組成物と、その組成物の製造および使用法を提示する。ある実施の形態において、蛍りん光体は、Aa-b-cde(Of-gg):Eub,REc (式中、Aは、Sr、Ca、Ba、またはこれらの金属の組み合わせとすることができ、Bは、Mg、Zn、Co、またはこれらの組み合わせとすることができ、Cは、Si、Ge、またはこれらの組み合わせとすることができ、aは、1から2.0であり、bは、0.0005から0.1であり、cは、0.0005から0.1であり、dは、0.9から1であり、eは、2から2.1であり、fは、6から7であり、gは、0.001と0.1の間であり、REは、Dy、Nd、Er、Ho、Tm、Yb、またはこれらの組み合わせである)の組成式を持つ材料を含んでいる。
(もっと読む)


発明の各実施例は、ストロンチウムオキシオルトシリケート型の蛍光体を含む発光装置に関する。本発明の発光装置は、紫外線又は可視光線領域の光を放射する発光ダイオードと、発光ダイオードの周囲に配置され、発光ダイオードから放射された光を吸収し、吸収光と異なる波長を有する光を放射する蛍光体とを含む。この蛍光体は、0<x≦0.05の範囲内のカルシウムのモル分率を備えており、一般式Sr3―x―y―zCaIISiO:Euを有するオキシオルトシリケート蛍光体を含む。 (もっと読む)


青色残光性蛍りん光体組成物と、その組成物の製造および使用法を提示する。更に具体的には、ある実施の形態において、蛍りん光体は、A10−x1+x(O20−x):Eu,RE(式中、Aは、Ba、Sr、Ca、K、Na、またはこれらの組み合わせであり、Mは、Al、B、Zn、Co、Ga、Sc、またはこれらの組み合わせであり、Cは、SiまたはGe、あるいはこれらの組み合わせであり、xは、0.001と5.0の間であり、REは、Dy、Nd、Er、Ho、Tm、Yb、Sm、またはこれらの組み合わせである)の組成式を持つ材料を含んでいる。有益な実施の形態では、Srと、Siと、AlおよびBの組み合わせとを用いて、青色で減衰速度の遅い蛍りん光体を製造する。他の実施の形態では、このような蛍りん光体の用途、特に、玩具、非常用器材、衣類、および計器盤での使用を提示する。
(もっと読む)


本発明の各実施例は、最終放射線負荷下で改善された安定性を有し、大気湿度に対して改善された耐性を有するシリケート化合物に基づく無機蛍光体に関するものであり、本発明にかかる蛍光体は、より高いエネルギ励起放射、すなわち、紫外線(UV)又は青色光を可視スペクトル範囲内のより長い波長放射に高い効率で変換させることができる。一般式Sr3―x―y―zCaIISiO:Euを有するシリケート蛍光体に0〜0.05の値を有するカルシウムのモル分率xが添加される。 (もっと読む)


201 - 220 / 1,225