説明

Fターム[4H001XA57]の内容

発光性組成物 (40,484) | 母体構成元素 (22,982) | La (481)

Fターム[4H001XA57]に分類される特許

121 - 140 / 481


本発明は希土類金属(Ln)リン酸塩に関する。Lnは、セリウムおよびテルビウムから選択される少なくとも1種の希土類元素、または上記2種の希土類元素の少なくとも一方と組み合わされたランタンである。この希土類金属(Ln)リン酸塩は、ラブドフェン型またはラブドフェン/モナザイト混合型の結晶構造を有し、カリウム含有量が最大7000ppmである。このリン酸塩は、2未満の一定pHで希土類元素塩化物を沈殿させることによって、500℃未満の温度でか焼することによって、また温水中で再分散させることによって得られる。本発明はまた、前記リン酸塩を少なくとも1000℃でか焼することによって得られる燐光体にも関する。 (もっと読む)


本発明は希土類金属リン酸塩(Ln)に関する。Lnは、セリウムおよびテルビウムから選択される少なくとも1種の希土類元素、または上記2種の希土類元素の少なくとも一方と組み合わされたランタンである。この希土類金属リン酸塩(Ln)は、リチウム含有量が最大300ppmであるラブドフェン型の、またはモナザイト型の結晶構造を有する。このリン酸塩は、2未満の一定pHで希土類元素塩化物を沈殿させ、その後か焼し温水中で再分散させることによって得られる。本発明はまた、リン酸塩を少なくとも1000℃でか焼することによって得られる燐光体にも関する。 (もっと読む)


本発明は、Lnがセリウムおよびテルビウムから選択された少なくとも1種の希土類、または上記2種の希土類の少なくとも1種と組み合わせたランタンであり、カリウム含量最大6000ppmのモナザイト型の結晶構造を有する希土類(Ln)リン酸塩に関する。このリン酸塩は、希土類塩化物を2未満の一定pHで沈澱させ、少なくとも700℃の温度でか焼し、温水に再分散することによって得られる。本発明はまた、前記リン酸塩を少なくとも1000℃でか焼することによって得られる蛍光体に関する。 (もっと読む)


ブレンドされた蛍光体組成物を形成するための方法が開示される。該方法は、ユーロピウム並びに少なくともカルシウム、ストロンチウム及びアルミニウムの窒化物を含む前駆体組成物を、耐火金属坩堝中で、窒化物出発原料と坩堝を形成する耐火金属との間での窒化物組成物の形成を排除するガスの存在下で燃焼するステップを含む。得られる組成物は、可視スペクトルの青色部分における周波数を可視スペクトルの赤色部分における周波数に変換する蛍光体を含み得る。
(もっと読む)


【課題】波長変換層により変換された可視光を検出して放射線画像を表す画像信号に変換する放射線画像検出器において光変換効率の向上を図る。
【解決手段】被写体を透過した放射線が照射される側から、検出器31および波長変換層32をこの順に配置した放射線画像検出器において、波長変換層32を、第1の蛍光体層32aと第2の蛍光体層32bとを積層されたものとし、第1の蛍光体層32aと第2の蛍光体層32bとを、第2の蛍光体層32bに含まれる蛍光体の全平均粒子径が第1の蛍光体層32aに含まれる蛍光体の全平均粒子径よりも大きくなるように形成するとともに、被写体を透過した放射線が照射される側から、第2の蛍光体層32bおよび第1の蛍光体層32aをこの順に配置する。 (もっと読む)


【課題】一般的に広く用いられている365nm付近の紫外線では実質上励起されず、異なる波長領域の紫外線で発光する真贋判定用蛍光体とこれを用いた真贋判定手段を提供する。
【解決手段】真贋判定用蛍光体は、一般式がLuS:Prで表される蛍光体に代表される希土類酸硫化物蛍光体である。希土類酸硫化物を母体とし、3価のプラセオジム(Pr3+)で付活することにより、少なくとも290nmから310nmの波長領域の紫外線により励起され、かつブラックライトのような365nm付近の紫外線では実質上励起されない特徴を有する蛍光体となる。この蛍光体を用いた真贋判定手段は、よりセキュリティ性が高く、安全性も高い真贋判定手段となる。 (もっと読む)


【課題】半値幅の広い新たな蛍光体を提供する。
【解決手段】式[A]で表される結晶相を含有する蛍光体を、この結晶相に含有される金属元素を2種以上含有する合金を原料の少なくとも一部として用いて製造する。
3-x-y-z+w21.5x+y-w2Si6-w1-w2Alw1+w2y+w111-y-w1 [A]
(RはLa、Gd、Lu、Y及びScを示し、MはCe、Eu、Mn、Yb、Pr及びTbを示し、AはBa、Sr、Ca、Mg及びZnを示し、x、y、z、w1及びw2は、(1/7)≦(3−x−y−z+w2)/6<(1/2)、0≦(1.5x+y−w2)/6<(9/2)、0≦x<3、0≦y<2、0<z<1、0≦w1≦5、0≦w2≦5及び0≦w1+w2≦5を満たす数である。) (もっと読む)


【課題】色温度が高いかまたは非常に高い場合においても演色が向上しているスペクトルを有する光源を提供する。
【解決手段】色品質尺度が、特に高色温度において向上したランプが提供される。ランプが作動時に、ランプの発光素子が発生させる光は、色品質尺度の15の色見本に対する彩度差値が、選択パラメータ内にある。彩度差値はCIELAB色空間において測定する。 (もっと読む)


【課題】発する蛍光が赤色成分を多く含み、半値幅の広い新たな蛍光体を提供する。
【解決手段】蛍光体に式[I]で表される結晶相を含有させる。
3-x-y-z+w2z1.5x+y-w2Si6-w1-w2Alw1+w2y+w111-y-w1 [I]
(RはLa、Gd、Lu、Y及び/又はScを示し、MはCe、Eu、Mn、Yb、Pr及び/又はTbを示し、AはBa、Sr、Ca、Mg及び/又はZnを示し、x、y、z、w1及びw2は以下の範囲の数値を示す。
(1/7)≦(3−x−y−z+w2)/6<(1/2)
0<(1.5x+y−w2)/6<(9/2)
0<x<3
0≦y<2
0<z<1
0≦w1≦5
0≦w2≦5
0≦w1+w2≦5) (もっと読む)


【課題】温度特性に優れた新規な蛍光体を提供する。
【解決手段】下記式の化学組成を有する結晶相を蛍光体に含有させ、480nm以上650nm以下の波長範囲に発光ピークを有するようにする。
CeIII3−xIV−III
IIIは前記式の結晶構造においてCeとともに3価のサイトに入る元素であって、90モル%以上が3価の金属元素で占められ、3価の金属元素の中でLa、Lu、Y及びGdの合計が90モル%以上を占める元素を表わし、MIVは前記式の結晶構造において4価のサイトに入る元素であって、90モル%以上が4価の金属元素で占められ、該4価の金属元素の中でSi及びGeの合計が90モル%以上を占める元素を表わし、X−IIIは前記式の結晶構造において−3価のサイトに入る元素であって、窒素が85モル%以上を占める元素を表わし、x、y、zは0.001≦x≦1、5.4≦y≦6.6、9.9≦z≦12.1の数を表わす。 (もっと読む)


【課題】発光強度の極めて高い蛍光体の提供,並びにこれを用いた発光装置の提供。
【解決手段】Ln源化合物(Lnは、Laを50モル%以上含有し、Sc,Y,La,Gd,Lu,Biから選ばれる少なくとも一種の元素を含有していても良い)、S源化合物、Eu源化合物を、LiとNaとKの3種類のアルカリ金属硫化物の接触下で焼成して得られる蛍光体であって、300〜450nmの波長範囲内の励起光を照射した時の最大の発光強度をImax、波長400nmの励起光を照射した時の発光強度をI400とした場合に、それらの発光強度比I400/Imaxが0.57以上であり、(Ln1−xEu2Sの化学組成を有する結晶相を有する蛍光体(xは、0.07≦x≦0.35である)。350〜415nmの光を発生する第1の発光体を励起源とし、該蛍光体を第2の発光体とすることにより高い発光強度を有する発光装置が得られる。 (もっと読む)


緑色発光Tb3+蛍光体、Y23:Eu3+蛍光体、Sr6BP520:Eu2+蛍光体、Mg4GeO5.5F:Mn4+蛍光体、及び任意でBaMgAl1117:Eu2+蛍光体を含むコンパクト蛍光ランプ用蛍光体ブレンドであって、前記ブレンドは、前記Sr6BP520:Eu2+蛍光体を1〜20重量%及び前記Mg4GeO5.5F:Mn4+蛍光体を5〜30重量%含有する前記ブレンドが記載されている。前記蛍光体ブレンドを含有する蛍光体コーティングを有するコンパクト蛍光ランプは、標準的なコンパクト蛍光ランプによって発生する光より心地よいと感じる光を発生する。
(もっと読む)


【課題】従来の985nm付近に主発光ピーク波長を有する赤外発光蛍光体と同等の発光強度を維持しつつ、かつ985nm付近以外に主発光ピーク波長を有する赤外発光蛍光体を提供する。
【解決手段】赤外発光蛍光体は、化学式が(La1−x−yYbNd)OClで表される蛍光体であって、xは、0.01≦x≦0.07であり、yは、0.15x≦y≦xである。従来の985nm付近に主発光ピーク波長を有する赤外発光蛍光体と同等またはそれ以上の発光強度を有し、かつ1020nm付近に主発光ピーク波長を有する赤外発光蛍光体となる。 (もっと読む)


近紫外線、青色光、緑色光のいずれによっても効率的に励起されるLa及びTiの酸化物を主成分とする固体照明用赤色蛍光体およびその製造方法が開示される。固体照明用赤色蛍光体は、主成分としてのLa及びTi酸化物と、補助成分としての希土類元素とを含んでいる。 ここで、希土類元素は、Eu、Er、Dy、Sm、Tb、Ce、Gd、Nd、Dy、Hoからなるグループから選択される一又は複数の組合せを有することができる。La及びTi酸化物は、LaTiO、LaTiおよびLaTi24から選択することができる。固体照明用赤色蛍光体は、安価な原料を使用して、大気圧での空気中で固相焼結法を使用して、1,000℃〜1,500℃の温度範囲で製造することができ、製造工程が簡単で、製造コストが安い。 (もっと読む)


【課題】深赤領域に発光ピークを有する赤色発光性蛍光体を含む蛍光体層を有する蛍光ランプを提供する。
【解決手段】0.4≦x≦0.7で、0≦y≦0.1である(Y1−x−yGd)AlO:Eu3+、並びに緑色及び青色を発光する蛍光体の各々の1種以上を含む蛍光体層を含む蛍光ランプ。このランプは相関色温度2500〜10000Kelvinで好ましくは90以上の演色評価指数を有する白色光を呈する。ランプの蛍光体ブレンド中に(Y1−x−yGd)AlO:Eu3+を使用すると、ランプの寿命の間増大した安定性と許容できる光束維持を示す高いCRIの光源が得られる。 (もっと読む)


【課題】
本発明は、新たな発光ナノシートを提供することを目的とし、また、その発光ナノシートの用途を提供することを課題とした。
【解決手段】
上記課題を解決するために発光ナノシートは、ペロブスカイト型八面体結晶が面状に結合してなるナノシートであって、前記八面体結晶のそれぞれがシート面に対して垂直な方向に3段重ねとなった3重結晶状シート構造を有し、段重ねとなった八面体結晶間に発光中心となる元素が固溶されてなることを特徴とする手段を用いた。 (もっと読む)


【課題】 本発明は、パッケージ化されたLEDに関する。本デバイスは、表面領域、表面領域を覆って形成される一つ以上のLEDデバイス、基板部材から構成される。本発明では、少なくともひとつのLEDデバイスが、基板を含む半極性あるいは非分極性のGaNの上に、形成されている。一つ以上のLEDデバイスは、一つ以上の第一の波長で、実質的に偏光された発光で光を放出している。そして、少なくとも一つのLEDデバイスは、電子波動関数と正孔波動関数によって、特徴付けられる量子井戸領域から構成されている。電子波動関数と正孔波動関数は、予め決められている量子井戸領域の空間的な領域で実質的に重なり合っている。本デバイスでは、一つ以上のLEDデバイスを覆って形成される、一つ以上の構成部材は厚みを有している。一つ以上の構成要素は、実質的に偏光された発光と、一つ以上の第二の波長の電磁気放射の発光により励起されている。 (もっと読む)


ホスト格子変化されたGOS発光物質、及びホスト格子変化されたGOS発光物質を使用する方法が提供される。ホスト格子変化されたGOS発光物質は、従来のGOS発光物質より短い残光を有する。また、ホスト格子変化されたGOS発光物質を組み入れた放射線検出器及び撮像装置が提供される。GOS発光物質とともにスペクトルフィルタが用いられてもよい。
(もっと読む)


【課題】ケイ酸窒化物ベースの深赤色蛍光体の提供。
【解決手段】式M(N,D):Eu2+(式中Mは、Mg、Ca、Sr、Baのような2価のアルカリ土類金属であり;Mは、Al、Ga、Bi、Y、La及びSmのような3価の金属であり、Mは、Si、Ge、P及びBのような3価の元素であり;Nは、窒素であり、Dは、F、Cl又はBrのようなハロゲンである。)を有する蛍光体で、微量のハロゲンを含有すると共に、酸素含有量が約2重量パーセント未満である特徴を有する。例示的化合物は、例えばCaAlSi(N1−x):Eu2+である。 (もっと読む)


【課題】廃蛍光体から高精度且つ効率的に特定の蛍光体を分離し、回収することができ、回収した蛍光体の再利用を容易にする方法を提供すること。
【解決手段】廃棄された複数種類の蛍光体(G、B、R)が混在する混合物から、少なくとも1種類の蛍光体(R)を分離する方法であって、
前記混合物を溶媒に投入する第1ステップと、
勾配を有する磁場中に前記溶媒の少なくとも一部を位置させ、前記蛍光体(G、B、R)に発生する磁気力により少なくとも1種類の蛍光体(R)を分離する第2ステップとを含み、
1種類の蛍光体(R)に発生する磁気力、重力及び浮力の合力が鉛直上向きであり、これにより1種類の蛍光体(R)を溶媒表面に浮上させる。 (もっと読む)


121 - 140 / 481