説明

Fターム[4K001AA07]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Co (263)

Fターム[4K001AA07]に分類される特許

1 - 20 / 263



【課題】 ニッケルを含む溶液からマグネシウム、マンガン、カルシウムを選択的に除去する不純物元素除去方法と、この不純物元素除去方法を用いて高純度の硫酸ニッケルを得る製造方法を提供する。
【解決手段】 ニッケルを含む溶液から高純度硫酸ニッケルを生成する製造工程において、その製造工程内のニッケルを含む溶液に対して、ニッケルを含む溶液の一部に硫化剤を添加することで、この溶液に含まれるニッケルの沈殿物であるNi硫化物と硫化後液からなる硫化溶液を生成し、ニッケルを含む溶液からニッケル成分を回収する硫化工程、この処理で得られた硫化溶液を、沈殿物であるNi硫化物と硫化後液に分離する固液分離工程、その固液分離工程により分離した硫化後液を、中和処理して不純物元素を含む中和澱物を生成し、硫化後液に含まれる不純物元素を回収する中和工程の3つの処理工程を施す高純度硫酸ニッケルの製造方法。 (もっと読む)


【課題】リチウムイオン電池から回収した正極材を原料として高純度の硫酸マンガンを製造する方法を提供する。
【解決手段】1)アルミニウム及びマンガンを含有する硫酸酸性水溶液を準備する工程と、ここで、当該硫酸酸性水溶液はリチウムイオン電池の正極材を硫酸浸出して得られた浸出後液に対して、溶媒抽出及び硫酸による逆抽出を経て得られた逆抽出液である、2)当該硫酸酸性水溶液を加熱濃縮することにより、アルミニウムの溶解を維持しながら硫酸マンガンを析出する工程と、3)固液分離により、析出した硫酸マンガンを回収する工程と、を含む硫酸マンガンの製造方法。 (もっと読む)


【課題】不純物、特にMg品位の低い高純度な硫酸ニッケルを得るための溶媒抽出方法の提供。
【解決手段】NiとCoを含有する硫化物を酸で浸出して得た溶液を、抽出剤濃度が15〜30体積%で含む抽出溶媒と、粗硫酸ニッケル溶液とをpH6.0〜7.0で接触させ、Niを抽出してニッケル保持有機相を得る第1工程、そのニッケル保持有機相と、Niを含む洗浄液とを混合し、保持有機相に含有されるNa、NHイオンを洗浄液に分離し、洗浄後ニッケル保持有機相を得る第2工程、その洗浄後ニッケル保持有機相と、MgとNiの濃度比Mg/Niが0.001〜0.004の範囲にある組成の硫酸ニッケル溶液とを反応させ、ニッケル保持有機相中のNiと硫酸ニッケル溶液に含有する不純物とを置換させ、逆抽出後有機相と不純物分離後の硫酸ニッケル溶液を得る工程の3工程で構成された溶媒抽出工程で処理する硫酸ニッケルの製造方法。 (もっと読む)


【課題】硫化物への不純物金属の混入を低減できる金属の硫化物沈殿方法を提供する。
【解決手段】目的金属を含む酸性の処理液に硫化剤を添加し、目的金属を硫化物として沈殿させる方法であって、処理液を希釈した後に、処理液にアルカリを添加してpHを調整し、処理液に含まれる不純物金属のアルカリ塩が再溶解した後に、処理液に硫化剤を添加する。アルカリ塩の周囲に不溶性の硫化物が生成されることがなく、硫化物への不純物金属の混入を低減できる。硫化物のスラリー濃度が低くなり不純物金属の共沈が低減され、硫化物への不純物金属の混入を低減できる。 (もっと読む)


【課題】高圧酸浸出法を用いてNi酸化鉱石からNiを回収する湿式製錬方法において、鉱石スラリーによる設備磨耗の抑制、最終中和残渣量の低減と共に、資源化するために不純物成分を分離回収する方法を提供する。
【解決手段】高圧酸浸出法の工程で、A工程:鉱石処理工程から産出する鉱石スラリー中のクロマイト粒子を、比重分離法を含む回収プロセスにより分離回収する工程、B−1工程:A工程を経てCr品位の下がった鉱石スラリーを浸出工程、固液分離工程で処理し、固液分離工程後の浸出液の中和をMg(OH)等のMg系アルカリで行う工程、B−2工程:A工程を経てCr品位の下がった鉱石スラリーを浸出工程、固液分離工程で処理し、固液分離工程後の浸出残渣スラリーの中和をMg(OH)等のMg系アルカリで行い、ヘマタイト粒子を回収する工程、から選ばれる少なくとも一つの工程を含むニッケル酸化鉱石からニッケルを回収する湿式製錬方法。 (もっと読む)


【課題】鉱石スラリーの粘度上昇を抑制して移送不良を生じさせない鉱石スラリーの製造方法及びこれを利用した金属製錬方法を提供する。
【解決手段】原料鉱石から鉱石スラリーを製造する鉱石スラリーの製造方法において、原料鉱石を解砕し、所定の分級点で分級してオーバーサイズの鉱石粒子を除去し、アンダーサイズの鉱石粒子からなる粗鉱石スラリーを得る解砕・分級工程S1と、得られた粗鉱石スラリーの粒度を測定する粒度測定工程S2と、粗鉱石スラリーを固液分離装置に装入し、水分を分離除去して鉱石成分を濃縮する鉱石スラリー濃縮工程S3とを有し、粒度測定工程S2にて測定された粒度が所定値を下回った場合に、解砕・分級工程S1にて除去されたオーバーサイズの鉱石粒子の一部を固液分離装置に装入添加する。 (もっと読む)


【課題】大量の金属溶解液からレアメタルを回収する場合でも、回収処理に用いる薬液の使用量を低減することができ、廃棄物の発生量が少なく、経済性に優れた金属回収方法を提供する。
【解決手段】実施形態の金属回収方法は、金属イオン吸着体2に金属溶解液1中の金属イオンを吸着させて回収する金属イオン吸着工程3と、金属イオン吸着体2に吸着させた前記金属イオンを溶離剤5によって溶離させる金属イオン溶離工程6と、前記金属イオンを含む溶離剤5を電気分解して金属成分を回収する電気分解工程8と、金属成分が回収された溶離剤5を回収する溶離剤回収工程10と、を有する。 (もっと読む)


【課題】廃棄されたリチウムイオン二次電池の正極などに用いられているリチウム含有金属酸化物より、効率よくリチウムが回収できるようにする。
【解決手段】第1工程S101で、遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を、希硫酸および希硝酸より選択した酸水溶液に混合して選択的にリチウムが浸出した混合液を作製する。次に、第2工程S102で、上述した混合液を濾過して濾液を得る。次いで、第3工程S103で、濾液のpHを4.5以上に調整して調整濾液を作製する。次に、第4工程S104で、キレート吸着樹脂を用いて調整濾液より遷移金属を除去して除去濾液を作製する。次に第5工程S105で、除去濾液に炭酸イオンを供給して除去濾液より炭酸リチウムを沈殿させて回収する。 (もっと読む)


【課題】例えばリチウムイオン電池の廃電池等、有価金属であるニッケルやコバルトを含む金属複合体から有価金属を回収するための有価金属回収方法において、ニッケル、コバルト等の有価金属の高い回収率を保持しつつ、それらの有価金属を含む合金から効率よくリンのみを分離すること。
【解決手段】ニッケルとコバルトを含有する金属複合体からの有価金属回収方法であって、金属複合体を熔融して熔融物を得る熔融工程と、熔融工程時の熔融物に対して、又は、熔融工程前の金属複合体に対して行われ、金属複合体を酸化処理する酸化工程と、熔融物から、スラグを分離して、有価金属を含む合金を回収するスラグ分離工程と、合金に含有されるリンを分離する脱リン工程とを備え、この脱リン工程が、合金に石灰含有物を添加し、次いで、前記合金を酸化する工程である。 (もっと読む)


【課題】目的物質(例えば希土類元素等)を含む製品(例えば希土類磁石等)等から当該目的物質を低エネルギー及び低コストで分離・回収する方法及び当該方法を実施するための分離・回収システムを提供する。
【解決手段】少なくとも一種の目的物質と、他種物質とを含有する固体状物RMから、目的物質を固体状で分離・回収する方法であって、減圧加熱炉2を用いて、減圧雰囲気下で固体状物の一の面から、加熱手段22を用い加熱し、固体状物中の目的物質を選択的に蒸発させる減圧加熱工程と、減圧加熱工程により蒸発した目的物質を、捕集板23により固体状で捕集する捕集工程とを含み、減圧加熱工程において、固体状物の加熱面の温度が、目的物質の蒸気圧が他種物質の蒸気圧よりも高くなる温度であって、目的物質は蒸発するが、他種物質は実質的に蒸発しない温度になるように加熱する。捕集物は、ハロゲン化処理部3、脱ハロゲン化処理部6を経て、回収される。 (もっと読む)


【課題】目的物質(例えば希土類元素等)を含む製品(例えば希土類磁石等)等から当該目的物質を低エネルギー及び低コストで分離・回収する方法及び当該方法を実施するための分離・回収システムを提供する。
【解決手段】少なくとも一種の目的物質と、他種物質とを含有する固体状物RMから、目的物質を分離し、回収する方法であって、低酸素雰囲気下で固体状物を当該固体状物の一の面側から、加熱手段22を用いて加熱して固液共存物とする加熱工程と、加熱工程後に固液共存物が固化してなる固化物の一の面側に析出した目的物質を回収する回収工程とを含む。析出した酸化物を物をハロゲン化処理部3にてハロゲン化し、さらに脱ハロゲン化処理部6にて脱ハロゲン化処理し、回収される。加熱工程においては、固体状物RMから蒸発した前記目的物質を、捕集板23を用いて固体状で捕集する捕集工程を有する。 (もっと読む)


【課題】 コバルト、ニッケル及びリチウムの少なくとも1種と、アルミニウム及びマンガンとを含む溶液からコバルト、ニッケル及びリチウムの少なくとも1種のロスを抑えつつアルミニウムとマンガンを効率良く回収する方法を提供する。
【解決手段】 アルミニウム及びマンガンの分離方法は、コバルト、ニッケル及びリチウムの少なくとも1種と、アルミニウム及びマンガンとを含む硫酸酸性溶液を溶媒抽出することで、アルミニウム及びマンガンを同時に溶媒へ抽出して分離する。 (もっと読む)


【課題】鉄とアルミニウム、マンガンを含む溶液から、良好な処理効率で鉄及びアルミニウムを分離し、且つ、その他の金属を効率良く回収する方法を提供する。
【解決手段】鉄及びアルミニウムの分離方法は、アルミニウム、鉄、及び、マンガンを含む硫酸酸性溶液から、中和によって、アルミニウムの一部、及び、鉄を分離する工程1と、工程1で得られた中和後液からアルミニウムを分離してマンガンを回収する工程2とを備える。 (もっと読む)


【課題】特別な反応操作が必要でなく、水中で析出される細かい金属化合物の結晶粒子を直接的に固液分離できる金属回収装置及び金属回収方法を提供する。
【解決手段】金属イオンを含む被処理水から金属化合物の結晶粒子を析出させる析出槽2と、磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤を供給するろ過助剤供給装置5と、前記ろ過助剤供給装置5から供給されるろ過助剤と分散媒とを混合する混合槽6と、前記混合槽6から供給される混合物をろ過し、その上に前記析出槽2から供給される被処理水をろ過して前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタ33を有する固液分離装置3と、前記固液分離装置3から剥離水とともに排出される剥離物に含まれる金属化合物結晶粒子とろ過助剤とを分離する分離槽4と、を有する。 (もっと読む)


【課題】設備コストや作業負荷をかけることなく効率的に塩素浸出反応を促進させて、高い浸出率でニッケル混合硫化物から金属成分を浸出させることができる金属硫化物の塩素浸出方法を提供する。
【解決手段】金属硫化物を原料として、銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出する。 (もっと読む)


【課題】金属の湿式製錬における不純物除去処理の処理コストを低減するために製錬プロセス系内に保有する銅量を低減させた状態で、塩素ガスの大気中への揮散を防いで、金属硫化物から高い浸出率で金属成分を浸出させることができる金属硫化物の塩素浸出方法、並びにその塩素浸出方法を利用した金属の湿式製錬方法を提供する。
【解決手段】金属硫化物を原料として、銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の銅イオン濃度を30g/L以上とし、かつ、塩濃度を270g/L以上350g/L以下として塩素浸出する。 (もっと読む)


【課題】金属の湿式製錬のプロセス系内に保有する銅量を低減させた状態でも、金属硫化物からの金属成分の浸出反応を促進させることができる金属硫化物の塩素浸出方法、並びにその塩素浸出方法を利用した金属の湿式製錬方法を提供する。
【解決手段】金属硫化物を原料として銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の塩化物イオン濃度を350g/L以上に調整して塩素浸出する。 (もっと読む)


【課題】例えばリチウムイオン電池の廃電池等の金属複合体からの有価金属の回収プロセス等、焙焼による金属複合体の酸化処理と、その後の熔融処理を含むプロセスにおいて、酸化処理の処理効率を高め、且つ、プロセス全体に必要となる添加物の総量を節減することにより、従来よりも処理コストの低減が可能な有価金属回収方法を提供すること。
【解決手段】金属複合体を焙焼して酸化処理を行う際に、焙焼用容器の積載面上にフラックスを含有する粒状付着防止剤を積載し、積載された粒状付着防止剤上に金属複合体を載置した状態で、金属複合体を焙焼して酸化する。酸化工程に引き続き行われる熔融工程において、酸化処理された金属複合体と、粒状付着防止剤の一部又は全部とを、同一の熔融炉に投入して熔融する。 (もっと読む)


【課題】硫化水素ガスの発生を抑制できる金属の硫化物沈殿方法を提供する。
【解決手段】目的金属を含む酸性の処理液に硫化剤とアルカリ性水溶液を添加し、目的金属を硫化物として沈殿させる方法であって、硫化剤とアルカリ性水溶液とを混合し、その混合液を処理液に添加する。目的金属が処理液に残存している状態において硫化水素ガスの発生が抑制されるので、毒性のある硫化水素ガスの処理負荷を軽減できる。余分な硫化水素ガスが発生せず、硫化剤やアルカリ性溶液が効率的に硫化物の生成に使用されるため、硫化剤やアルカリ性溶液の使用量を少なくできコストを低減できる。 (もっと読む)


1 - 20 / 263