説明

Fターム[4K001AA16]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Mn (145)

Fターム[4K001AA16]に分類される特許

1 - 20 / 145



【課題】リチウムイオン電池から回収した正極材を原料として高純度の硫酸マンガンを製造する方法を提供する。
【解決手段】1)アルミニウム及びマンガンを含有する硫酸酸性水溶液を準備する工程と、ここで、当該硫酸酸性水溶液はリチウムイオン電池の正極材を硫酸浸出して得られた浸出後液に対して、溶媒抽出及び硫酸による逆抽出を経て得られた逆抽出液である、2)当該硫酸酸性水溶液を加熱濃縮することにより、アルミニウムの溶解を維持しながら硫酸マンガンを析出する工程と、3)固液分離により、析出した硫酸マンガンを回収する工程と、を含む硫酸マンガンの製造方法。 (もっと読む)


【課題】 ニッケルを含む溶液からマグネシウム、マンガン、カルシウムを選択的に除去する不純物元素除去方法と、この不純物元素除去方法を用いて高純度の硫酸ニッケルを得る製造方法を提供する。
【解決手段】 ニッケルを含む溶液から高純度硫酸ニッケルを生成する製造工程において、その製造工程内のニッケルを含む溶液に対して、ニッケルを含む溶液の一部に硫化剤を添加することで、この溶液に含まれるニッケルの沈殿物であるNi硫化物と硫化後液からなる硫化溶液を生成し、ニッケルを含む溶液からニッケル成分を回収する硫化工程、この処理で得られた硫化溶液を、沈殿物であるNi硫化物と硫化後液に分離する固液分離工程、その固液分離工程により分離した硫化後液を、中和処理して不純物元素を含む中和澱物を生成し、硫化後液に含まれる不純物元素を回収する中和工程の3つの処理工程を施す高純度硫酸ニッケルの製造方法。 (もっと読む)


【課題】不純物、特にMg品位の低い高純度な硫酸ニッケルを得るための溶媒抽出方法の提供。
【解決手段】NiとCoを含有する硫化物を酸で浸出して得た溶液を、抽出剤濃度が15〜30体積%で含む抽出溶媒と、粗硫酸ニッケル溶液とをpH6.0〜7.0で接触させ、Niを抽出してニッケル保持有機相を得る第1工程、そのニッケル保持有機相と、Niを含む洗浄液とを混合し、保持有機相に含有されるNa、NHイオンを洗浄液に分離し、洗浄後ニッケル保持有機相を得る第2工程、その洗浄後ニッケル保持有機相と、MgとNiの濃度比Mg/Niが0.001〜0.004の範囲にある組成の硫酸ニッケル溶液とを反応させ、ニッケル保持有機相中のNiと硫酸ニッケル溶液に含有する不純物とを置換させ、逆抽出後有機相と不純物分離後の硫酸ニッケル溶液を得る工程の3工程で構成された溶媒抽出工程で処理する硫酸ニッケルの製造方法。 (もっと読む)


【課題】硫化物への不純物金属の混入を低減できる金属の硫化物沈殿方法を提供する。
【解決手段】目的金属を含む酸性の処理液に硫化剤を添加し、目的金属を硫化物として沈殿させる方法であって、処理液を希釈した後に、処理液にアルカリを添加してpHを調整し、処理液に含まれる不純物金属のアルカリ塩が再溶解した後に、処理液に硫化剤を添加する。アルカリ塩の周囲に不溶性の硫化物が生成されることがなく、硫化物への不純物金属の混入を低減できる。硫化物のスラリー濃度が低くなり不純物金属の共沈が低減され、硫化物への不純物金属の混入を低減できる。 (もっと読む)


【課題】廃棄されたリチウムイオン二次電池の正極などに用いられているリチウム含有金属酸化物より、効率よくリチウムが回収できるようにする。
【解決手段】第1工程S101で、遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を、希硫酸および希硝酸より選択した酸水溶液に混合して選択的にリチウムが浸出した混合液を作製する。次に、第2工程S102で、上述した混合液を濾過して濾液を得る。次いで、第3工程S103で、濾液のpHを4.5以上に調整して調整濾液を作製する。次に、第4工程S104で、キレート吸着樹脂を用いて調整濾液より遷移金属を除去して除去濾液を作製する。次に第5工程S105で、除去濾液に炭酸イオンを供給して除去濾液より炭酸リチウムを沈殿させて回収する。 (もっと読む)


【課題】大量の金属溶解液からレアメタルを回収する場合でも、回収処理に用いる薬液の使用量を低減することができ、廃棄物の発生量が少なく、経済性に優れた金属回収方法を提供する。
【解決手段】実施形態の金属回収方法は、金属イオン吸着体2に金属溶解液1中の金属イオンを吸着させて回収する金属イオン吸着工程3と、金属イオン吸着体2に吸着させた前記金属イオンを溶離剤5によって溶離させる金属イオン溶離工程6と、前記金属イオンを含む溶離剤5を電気分解して金属成分を回収する電気分解工程8と、金属成分が回収された溶離剤5を回収する溶離剤回収工程10と、を有する。 (もっと読む)


【課題】特別な反応操作が必要でなく、水中で析出される細かい金属化合物の結晶粒子を直接的に固液分離できる金属回収装置及び金属回収方法を提供する。
【解決手段】金属イオンを含む被処理水から金属化合物の結晶粒子を析出させる析出槽2と、磁性体を含む単体粒子または凝集体の平均粒子径が0.5〜20μmのろ過助剤を供給するろ過助剤供給装置5と、前記ろ過助剤供給装置5から供給されるろ過助剤と分散媒とを混合する混合槽6と、前記混合槽6から供給される混合物をろ過し、その上に前記析出槽2から供給される被処理水をろ過して前記被処理水中の金属化合物結晶粒子と前記混合物中のろ過助剤との堆積層を形成するフィルタ33を有する固液分離装置3と、前記固液分離装置3から剥離水とともに排出される剥離物に含まれる金属化合物結晶粒子とろ過助剤とを分離する分離槽4と、を有する。 (もっと読む)


【課題】 コバルト、ニッケル及びリチウムの少なくとも1種と、アルミニウム及びマンガンとを含む溶液からコバルト、ニッケル及びリチウムの少なくとも1種のロスを抑えつつアルミニウムとマンガンを効率良く回収する方法を提供する。
【解決手段】 アルミニウム及びマンガンの分離方法は、コバルト、ニッケル及びリチウムの少なくとも1種と、アルミニウム及びマンガンとを含む硫酸酸性溶液を溶媒抽出することで、アルミニウム及びマンガンを同時に溶媒へ抽出して分離する。 (もっと読む)


【課題】鉄とアルミニウム、マンガンを含む溶液から、良好な処理効率で鉄及びアルミニウムを分離し、且つ、その他の金属を効率良く回収する方法を提供する。
【解決手段】鉄及びアルミニウムの分離方法は、アルミニウム、鉄、及び、マンガンを含む硫酸酸性溶液から、中和によって、アルミニウムの一部、及び、鉄を分離する工程1と、工程1で得られた中和後液からアルミニウムを分離してマンガンを回収する工程2とを備える。 (もっと読む)


【課題】硫化水素ガスの発生を抑制できる金属の硫化物沈殿方法を提供する。
【解決手段】目的金属を含む酸性の処理液に硫化剤とアルカリ性水溶液を添加し、目的金属を硫化物として沈殿させる方法であって、硫化剤とアルカリ性水溶液とを混合し、その混合液を処理液に添加する。目的金属が処理液に残存している状態において硫化水素ガスの発生が抑制されるので、毒性のある硫化水素ガスの処理負荷を軽減できる。余分な硫化水素ガスが発生せず、硫化剤やアルカリ性溶液が効率的に硫化物の生成に使用されるため、硫化剤やアルカリ性溶液の使用量を少なくできコストを低減できる。 (もっと読む)


【課題】重金属類で汚染された土地に播いた種子の発芽率および生育率を高めることができ、ひいては汚染土壌を効率的かつ安定的に浄化することが可能な種子プラグを提供し、併せて汚染土壌の浄化方法を提供する。
【解決手段】肥料あるいは少量の栄養塩を含む種子育成対象土壌65〜97パーセントに対し、蒟蒻粉、寒天粉、片栗粉、葛粉、コンスターチ、白玉粉のうちのいずれかの粉体、あるいはそれらを2以上混合して構成する粉体からなる原料を3〜35パーセントの範囲で水を加えて混合した後、これを乾燥させて製造された培地で植物の種子を包被し、作製してなる種子プラグを作製する。また種子プラグ作製工程と、重金属類で汚染された土壌の土地に種子プラグを植栽し、植物を育成させる育成工程と、育成工程で育成された植物の根、葉、茎、および花を収穫し、乾燥させた後に焼却することにより、植物が吸収した重金属類を回収する回収工程と、を備える。 (もっと読む)


【課題】運転コストを低く抑えることができ、二次燃焼後のガス処理の負担を軽減することのできる有価物回収装置等を提供する。
【解決手段】セメント焼成装置2に付設された廃棄物等焙焼炉11と、焙焼炉の排ガスをセメント焼成装置に戻す返還路とを備える有価物回収装置1。焙焼炉の排ガスを返還路を介してセメント焼成装置の800℃以上の温度領域に戻すことができる。焙焼炉を、セメント焼成装置で発生した熱を反射して炉床で廃棄物等Wを加熱する反射炉とし、焙焼炉の内部をセメント焼成装置の800℃以上の温度領域に面するように構成することができる。焙焼炉を、セメント焼成装置からの燃焼ガスによって廃棄物等を加熱する定置炉23とし、セメント焼成装置からの燃焼ガスの分取場所を500℃以上、1200℃以下の温度領域に存在するように構成してもよい。 (もっと読む)


【課題】処理に要するコストおよびエネルギーを抑制できるとともに、廃電池に含まれるリチウムの回収率を向上できる廃電池のリサイクル方法を提供する。
【解決手段】廃電池を破砕した破砕物に加熱炉で加熱する第1加熱処理を施し、当該破砕物から金属含有物質を回収する廃電池のリサイクル方法であって、破砕物としてリチウムを含む破砕物を用い、第1加熱処理を、最高温度T1(℃)を730℃以上とするとともに、雰囲気をCO2分圧PCO2(atm)とCO分圧PCO(atm)により表されるPCO2/(PCO2+PCO)、および、CO2分圧(atm)が所定式を満たす条件で施し、金属含有物質を回収する際に炭酸リチウムを回収することを特徴とする廃電池のリサイクル方法である。この場合、最高温度T1を1320℃以上とし、第1加熱処理により発生したガスから炭酸リチウムを回収するのが好ましい。 (もっと読む)


【課題】廃電子基板に含有される銅、亜鉛等の金属成分を効率良く回収することができ、レアメタル、金、銀等の貴金属も回収可能な金属の浸出方法の提供。
【解決手段】銅と、鉄と含む廃電子基板粉末を酸性液に加えて、温度が100℃以上、酸素分圧が1MPa〜4MPaの条件下で、金属を浸出させる廃電子基板からの金属の浸出方法である。前記酸性液の酸濃度が、0.5mol/L〜3mol/Lであり、硫酸水溶液である態様などが好ましい。 (もっと読む)


【課題】
煩雑な工程を使用せず、かつ、比較的簡便な設備によって、リチウムイオン電池から有価金属を回収する方法を提供する。
【解決手段】
リチウム及び遷移金属元素とを含むリチウムイオン電池の正極材を酸性溶液に溶解させてリチウムイオンと遷移金属イオンとを酸性溶液内に生成させ、その酸性溶液と回収液とを陰イオン透過膜を挟んで流してリチウムイオンを酸性溶液から回収溶液へ透析させ、透析でリチウムイオンが溶解した回収液から、リチウムイオンを回収する。このときに、リチウムイオンの水和構造の水和構造を破壊する添加剤を添加することにより、リチウムイオンの透過膜透過速度が向上し、リチウム選択透過率及び回収率が向上する。 (もっと読む)


【課題】より容易に低コストで希少金属が回収できるようにする。
【解決手段】作製した混合粉末を粉砕処理する。例えば、ボールミルを用いて粉砕処理を行えばよい。この粉砕処理により、混合粉末中の金属酸化物と還元剤とが、メカノケミカル反応により固相で反応し、金属酸化物が還元される。ボールミルによる粉砕用ボールを用いての回転運動による粉砕処理では、物理的な粉砕処理のみでなく、機械的エネルギーによる化学反応を起こすメカノケミカル反応を起こすことが知られている。この還元により、金属酸化物より金属などの還元体が生成される。 (もっと読む)


【課題】使用済みリチウムイオン電池類から、その中に含まれる有価物を、各々分別して回収する方法を提供する。
【解決手段】電解質等の有機物を除去した後、解体して、活物質から成る粉状品と鉄、銅、アルミから成る塊状品に分け、粉状品は、酸化焙焼及び還元焙焼により、グラファィトの除去、及び、リチウム複合酸化物の結晶を分解して、その中に含まれるリチウム分を、いったん水酸化リチウムにしてから、最終的に炭酸リチウムとして回収し、さらに、コバルトとニッケルは、磁選にて磁着物として回収し、マンガン及び鉄などの酸化物や水酸化物は非磁着物として回収する。 (もっと読む)


【課題】マンガン鉱石を硫酸で溶解・抽出した後に残る抽出残渣のイオウ分を低減して、マンガン系合金鉄製造用原料として使用可能にする。
【解決手段】イオウを含有するマンガン鉱石抽出残渣を水中でスラリー化し、得られたスラリーに、添加終了直後の液pHが25℃で10.5以上となる量のアルカリを添加して残渣とアルカリとの接触状態を保持した後、固体分を回収する。 (もっと読む)


【課題】高純度銀の製造工程において発生する廃液の排水処理負荷の軽減を図ること。
【解決手段】本発明の高純度銀製造廃液の処理方法は、銀を含む製錬中間物から亜硫酸塩水溶液により銀を浸出させる銀浸出工程と、浸出した浸出液を中和して塩化銀を析出させる塩化銀析出工程と、析出した塩化銀を酸性水溶液中で酸化処理して精製する塩化銀精製工程と、を有する高純度銀の製造方法において、前記塩化銀析出工程及び/又は前記塩化銀精製工程において発生した廃液に硫酸及び/又は塩酸を添加して前記廃液からSO2−を除去する脱SO2−工程と、前記脱SO2−工程で発生したSOガスを水酸化アルカリ金属及び/又は炭酸アルカリ金属塩の水溶液に吸収させて亜硫酸塩水溶液を得る亜硫酸塩水溶液生成工程と、を備え、前記亜硫酸塩水溶液生成工程で得られた亜硫酸塩水溶液を前記銀浸出工程で使用される亜硫酸塩水溶液として利用することを特徴とする。 (もっと読む)


1 - 20 / 145