説明

Fターム[4K001AA40]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | 希土類 (155) |  (37)

Fターム[4K001AA40]に分類される特許

1 - 20 / 37



【課題】高価な薬剤や溶媒等を使用することなく、効率的にかつ高い回収率で希土類元素を回収することができる希土類元素の回収方法を提供する。
【解決手段】希土類元素を含有する水溶液に硫酸イオン以外の水溶性塩類を共存させ、次いで、アルカリ金属硫酸塩を添加して希土類元素の硫酸複塩沈殿を生成させる。水溶性塩類は、水和して上記希土類元素を含有する水溶液中の自由水を低減させることが可能な塩類であり、塩化物、過塩素酸塩、塩素酸塩、臭素酸塩、臭化物、過ヨウ素酸塩、ヨウ素酸塩、ヨウ化物、硝酸塩から選択される1種以上で、2価の陽イオンを有する塩類で、塩化ニッケルであることが好ましく、その陰イオン濃度として4〜10mol/lで共存させる。アルカリ金属硫酸塩は、硫酸ナトリウムであることが好ましく、添加することにより水溶液中の硫酸イオン濃度を50g/l以上とする。 (もっと読む)


【課題】強酸や強アルカリでの処理などの、複雑な処理を必要とせずに、温和な条件で、簡易な処理により、レアアースを含む金属含有物から、効率的にレアアースを回収する方法を提供する。
【解決手段】レアアースを含む金属含有溶液に、嫌気培養または好気培養した鉄還元細菌を用いて処理し、レアアースを鉄還元菌細胞に収着後、酸処理してレアアースを脱離して回収する。鉄還元細菌として、シワネラアルゲを用い、酸処理のpHは前記金属含有溶液のpHより小さくすることが条件が好ましい。回収されるレアアースは、高濃度に濃縮され、工業的に再利用するのが容易となる。 (もっと読む)


【課題】効率的にかつ高い回収率で重希土類元素を回収することができる重希土類元素の回収方法を提供する。
【解決手段】重希土類元素と軽希土類元素とを含有する溶液に、アルカリ金属硫酸塩を硫酸イオン濃度として27g/l以上となるように添加し、重希土類元素を軽希土類元素の硫酸複塩に共沈させて回収する。溶液の温度は55℃以上100℃以下とすることが好ましく、またアルカリ金属硫酸塩を添加した後20分以上攪拌することが好ましい。さらに、溶液に含有される軽希土類元素の重希土類元素に対するモル比率が3以上となるように溶液を調整することが好ましい。 (もっと読む)


【課題】大型の設備を使用せずとも鉄、砂鉄粉を原料として銅を製造乃至元素変換する。
【解決手段】塩酸液に鉄を投入し、加熱下で攪拌しながら塩化第二鉄液を作る工程と、鉄の一部が銅に変換され、変換された銅は比重差を利用して抽出する工程と、抽出した銅を水洗浄して塩酸を除去する工程と、水洗浄した銅は硫酸銅液を電解質として銅を陰極側に抽出する工程とを備える、塩酸液濃度は、20%〜45%であって、鉄を投入した塩酸液の加熱温度は80℃〜100℃で加熱、攪拌する。厚さ1.5mm以下の鉄板の裁断片及び又は砂鉄粉を塩化第二鉄液に混合、撹拌する。 (もっと読む)


【課題】金属、特に希土類金属を抽出又は選択分離するための溶媒抽出において、金属の分離係数が高く、水への溶解度が少ない金属抽出剤を提供する。
【解決手段】下記一般式(1)で表されるフェニルホスホン酸エステルからなる、金属抽出剤。


(式中、R1は分岐炭素原子数が4〜6個であり且つ全炭素原子数が16〜20の炭化水
素基を表し、R2は水素原子、ハロゲン原子及び炭素原子数1〜3の炭化水素基からなる
群から選ばれる置換基を表し、mは1〜3の数を表し、ただしmが2〜3の場合にはR2
はそれぞれ同じでも異なっても良く、Mは水素原子又はアルカリ金属原子を表す。) (もっと読む)


【課題】軽金属元素・重金属元素・レアアースの高純度元素の製造方法として、電解水溶液の使用pH対応とすることにより、平均粒径の変化を簡易に高純度元素の状態を保持できる。
【解決手段】軽金属元素・重金属元素・レアアースの沈殿物を電解水溶液洗浄方法により、高純度元素製造を特徴とする。 (もっと読む)


【課題】 対象となる金属を効率的に回収するとともに、材料密度が高い状態で対象金属を回収可能とする。
【解決手段】 液体中にプラズマを発生させる工程と、レアメタル又は貴金属を含む材料を液体に投入する工程と、材料がプラズマの照射を受けて分解し、粒子化して、液体中に沈殿する工程と、沈殿したレアメタル又は貴金属のナノ粒子を回収する工程とを有した。 (もっと読む)


【課題】低濃度の希土類金属であっても容易・簡便かつ安価に回収できる希土類金属回収材および希土類金属回収方法を提供する。
【解決手段】希土類金属Yを含有する検体から希土類金属Yを回収するべく、希土類金属Yと結合可能なリン酸基11を有する核酸10と、核酸10のアミノ基12に架橋した複数の反応基21を有する架橋分子20と、架橋分子20の一端に結合した固相30と、を備えた希土類金属回収材X、および、当該希土類金属回収材Xと、希土類金属Yを含有する可能性のある検体とを接触させる検体接触工程と、核酸10のリン酸基11と希土類金属Yとを結合させる結合工程と、結合工程を行なった希土類金属回収材Xに溶出液を添加して希土類金属Yを溶出させる溶出工程と、を有する希土類金属回収方法。 (もっと読む)


【課題】鉄族元素及び希土類元素をイオン液体に溶解させ、これらを選択的に分離する鉄族元素及び希土類元素の回収方法、並びに該回収方法に用いうる鉄族元素及び希土類元素の回収装置の提供。
【解決手段】鉄族元素及び希土類元素を含有する資源を溶解させたイオン液体から、該鉄族元素を電解析出により回収する工程Aと、該鉄族元素の回収処理を経たイオン液体から該希土類元素を電解析出により回収する工程Bと、を含む鉄族元素及び希土類元素の回収方法であり、前記イオン液体は、四級ホスホニウムのカチオン、又は四級アンモニウムのカチオンと、BF、PF、N[SO(CF)CF]、N(SOF)、SOCF、SOCH、CFCOO、SCN、N(CN)、ハロゲン、(RO)POO、 (RO)PSS、RCOOから選択されるアニオンとから構成される、鉄族元素及び希土類元素のイオン液体を利用した回収方法。 (もっと読む)


【課題】船舶を用いた設備とすることなく所望量の海水中のウランを連続して回収する。
【解決手段】陸域1から海底2に沿ってチェーンコンベア3を設け、チェーンコンベア3に所定の間隔で多数の捕集材21を取り付け、陸域1の駆動手段12によりチェーンコンベア3を周回駆動させ、船舶を用いた設備とすることなく、チェーンコンベア3を周回させている過程で捕集材に21に海水中のウランを吸着させる。 (もっと読む)


【課題】
使用済み部材に含まれるレアメタルを、再利用可能に保管する。
【解決手段】
溶融状態の第1のガラス素材を第1の容器中に保持し、レアメタルを含有する使用済み部材を第1の容器中の溶融状態の第1のガラス素材表面部に配置し、冷却材で溶融状態の第1のガラス素材を急冷・固化して、使用済み部材と結合した半パッケージとし、溶融状態の第2のガラス素材を第2の容器中に保持し、半パッケージを使用済み部材を下方にして、第2の容器中の溶融状態の第2のガラス素材表面部に配置し、半パッケージの第1のガラス素材と溶融状態の第2のガラス素材とを接しさせ、冷却材で溶融状態の第2のガラス素材を急冷・固化して、前記使用済み部材を気密に内包するパッケージとする。 (もっと読む)


【課題】 リチウムイオン電池の正極活物質を構成する化合物を効果的に分解することができ、正極活物質から有価金属であるニッケル及びコバルトの浸出率を向上させて回収率を向上させることができるニッケル及びコバルトの浸出方法及び有価金属の回収方法を提供する。
【解決手段】 リチウムイオン電池から剥離した正極活物質を、水素の還元電位よりも卑な還元電位を有する金属を添加した酸性溶液に浸漬し、正極活物質からニッケル及びコバルトを浸出させる。添加する金属としては、ニッケル−水素電池から得られるニッケルメタルを用いることが好ましい。 (もっと読む)


【課題】複数の希土類が混合している水溶液からイオン半径の小さな希土類を高速で大量に分離・回収すること。
【解決手段】複数の希土類が混在している水溶液から特定の希土類を分離回収する凝集剤において、該凝集剤が酸性基を有する水溶性高分子、及びアミノ基を有する主鎖が長鎖の水溶性高分子からなることを特徴とする希土類を分離回収する凝集剤、及びそれを用いた希土類分離回収方法、希土類分離回収装置。 (もっと読む)


【解決手段】ジアルキルジグリコールアミド酸を抽出剤成分とする希土類金属抽出剤を、ジグリコール酸Xmol、エステル化剤Ymol中、モル比Y/Xを2.5以上、反応温度70℃以上、反応時間1時間以上で反応させ、減圧濃縮することで、未反応物及び反応残分を除去して反応中間生成物を得、更に、反応溶媒として、非プロトン性極性溶媒を加え、反応中間生成物とジアルキルアミンZmolとを、モル比Z/Xを0.9以上として反応させ、非プロトン性極性溶媒を除去することにより合成する。
【効果】軽希土類元素の分離に優れたジアルキルジグリコール酸を、高価な無水ジグリコール酸及び有害なジクロロメタンを用いることなく、低コストで、効率よく、かつ高収率で合成できるため、工業的利用価値が高い。 (もっと読む)


【課題】希少金属や有害金属などの金属を効率よく吸着して回収する金属吸着材及び該金属吸着材の製造方法並びに該金属吸着材を用いた金属の吸着方法を提供すること。
【解決手段】ポリアリルアミンをイソチオシアナートと反応させて得られるポリアリルアミン誘導体を用いて希少金属や有害金属などの金属を吸着して回収する。 (もっと読む)


【課題】CCIM法を用いて、健全な長尺の鋳塊を安定して製造することができる長尺鋳塊の溶解製造方法を提供することを課題とする。
【解決手段】溶湯4を芯金用鋳型9に注湯して軸状の芯金鋳塊1を作製する第一工程と、溶湯4を棒状原料鋳型10内に立設した芯金鋳塊1の周囲に複数回に分けて注湯することで棒状原料2を作製する第二工程と、るつぼ底6が上下方向に移動自在に形成された水冷銅製るつぼ5内に棒状原料2を装入して誘導加熱で溶解し下方に引き抜くことで、その引抜方向の長さが直径に対して1.5倍以上の長尺鋳塊3を製造する第三工程とよりなる。 (もっと読む)


【課題】有価金属の選択性や回収効率が良く、しかも、有価金属の回収に用いた物質が再利用できる有価金属の回収方法を提供する。
【解決手段】 以下の工程(a)〜(c)、
(a)下記式(I)
【化1】


を構成単位とするpH応答性ポリマーと有価金属イオンを含有し、そのpHが6
.4より高い水溶液を調製する工程
(b)前記水溶液のpHを6.4より低くし、pH応答性ポリマーと有価金属の凝集物
を形成させる工程
(c)前記水溶液から凝集物を回収する工程
を含むことを特徴とする有価金属の回収方法。 (もっと読む)


【課題】希土類元素の抽出率を80%以上に設定した場合であっても、鉄の抽出率が10%以下となる希土類元素を浸出する方法を提供する。
【解決手段】希土類元素−Fe系合金を焙焼後、酸浸出処理を施すことにより希土類元素を浸出するに際し、500〜1000℃の焙焼温度まで10℃/min以下の速度で昇温し、該焙焼温度で0.5時間以上焙焼することにより、該希土類元素−Fe系合金中のFeをFe2O3主体のFe酸化物とし、ついで酸浸出処理により希土類元素を浸出させる。 (もっと読む)


【課題】希少金属や有害金属などの金属を効率よく吸着して回収する方法を提供すること。
【解決手段】ポリアリルアミンを二硫化炭素で架橋させて得られるチオウレア骨格を有するハイドロゲルを用いて希少金属や有害金属などの金属を吸着して回収する。 (もっと読む)


1 - 20 / 37