説明

Fターム[4K001BA05]の内容

金属の製造又は精製 (22,607) | 原料 (3,914) | 製錬原料 (372) | 酸化物 (173)

Fターム[4K001BA05]に分類される特許

141 - 160 / 173


【課題】流動界面ゾル−ゲル法により得られる五酸化タンタルナノシートを還元して得られる金属タンタルナノシートを利用し、高比表面積の金属タンタルナノシートを提供する。
【解決手段】化学修飾したタンタルアルコキシドを部分加水分解することによりポリマー化した前駆体を水に適度な溶解性を有する溶媒に溶解し、精密にケミカルデザインされたプロセスで流動する水面上に滴下し展開する流動界面ゾル−ゲル法により製造される、厚みが制御され、均一な構造のタンタル酸化物ナノシートを、アルカリ、アルカリ土類あるいは希土類金属蒸気で還元することにより金属タンタルナノシート。 (もっと読む)


【課題】ニッケル、コバルトを含む金属水酸化物または金属炭酸化物を使用した乾式製錬によるフェロニッケル製造において、環境問題と経済性の問題とを解決する。
【解決手段】あらかじめ硫黄と塩素とを除去したニッケルを含む金属水酸化物206を使用することにより、排ガス216中のSOとClガスの濃度を増大させることなく操業することができる。したがって排ガス処理設備を新たに設置する必要がなく、設備に投資する費用を低減することができる。 (もっと読む)


アルミニウムの製造に用いられる炭素熱還元炉のアンダーフローへ炭素材料を供給するために、中空の隔壁(4)が用いられる。隔壁(4)は、低温コンパートメント(2)と高温コンパートメント(3)に分割するようになし、低温コンパートメント(2)では、酸化アルミニウムが炭素と反応して炭化アルミニウムが生成され、高温コンパートメント(3)では、炭化アルミニウムと残りの酸化アルミニウムが反応して、アルミニウムと一酸化炭素が生成される。
(もっと読む)


本発明は、亜鉛の電気分解回収にあたって亜鉛含有材料をリーチングする方法に関する。本発明によると、供給材料、すなわち亜鉛カルサインおよび硫化亜鉛が3段階でリーチングされ、諸段階における硫酸分は固体の移動する方向に従って増加する。各リーチング段階で生成された固体および溶液は、全工程を通じて互いに対して向流的に送られる。
(もっと読む)


本発明は、含ニッケルラテライト鉱石からニッケルおよびコバルトを回収する方法であって、(a)含ニッケルラテライト鉱石を提供し、かつその鉱石をその低マグネシウム褐鉄鉱部分、および高マグネシウムサプロライト部分に選別するステップと、(b)一次高圧浸出ステップにおいて褐鉄鉱部分を酸溶液中で処理して、一次浸出スラリーを生成させるステップと、(c)一次浸出スラリーにサプロライト部分を添加して、針鉄鉱および/または赤鉄鉱としての鉄の沈殿を開始させる一方、同時に鉄の沈殿からさらなる酸を放出して、二次常圧浸出ステップを遂行し、二次浸出スラリーを生成させるステップとを含む方法であり、この場合鉱石スラリーおよび/または酸溶液を調製するのに使用されるすべての水が、ジャロサイト形成を実質的に防止するイオン組成物を有する方法を提供する。
(もっと読む)


【課題】溶鉱炉で銑鉄を製造するために水平方向に移動する移動床において、還元材内装塊成鉱を部分的に迅速に還元し、高炉等の溶鉱炉用装入原料として好適な部分還元鉄を製造する製造方法およびその装置を提供する。
【解決手段】移動床1に、還元材内装塊成鉱6と金属セラミックス球8を混合状態で供給して、混合層2を形成し、混合層に燃焼装置15aで生成する1000〜1300℃の燃焼排ガス16aを通して、還元材内装塊成鉱を部分的に還元した後、混合層を冷却塔14に投入して、部分還元鉄と金属セラミックス球を冷却し、冷却塔底部から、部分還元鉄と金属セラミックス球を分離して排出する。 (もっと読む)


【課題】 ニッケル元素を含有する粉体から、金属浴を生成することなく、高純度の金属ニッケルを粉体状で回収することのできるニッケル元素を含有する粉体からの金属ニッケルの濃縮回収方法を提供。
【解決手段】 ニッケル元素を含有する粉体を、500℃以上の高温還元気流中に供給し、該高温還元気流中で還元反応を生じさせ、前記粉体中において局所的に金属ニッケルを濃化させる。 (もっと読む)


酸化チタン化合物、チタン鉱石、鉱石濃縮物またはその混合物におけるチタンの溶解度を増加する加工。加工は、鉄化合物のチタン鉱石又は鉱石濃縮物への添加、鉄チタン化合物を形成する制御された雰囲気下での加熱、混合物を形成する混合、冷却、粉末を形成する粉砕を含む。粉末のチタンの濃塩酸における溶解度は、チタン鉱石又は鉱石濃縮物のチタンの溶解度より大きい。
(もっと読む)


本発明は、高純度と、大きい比表面積と、制御された含有量の酸素及び窒素と、コンデンサの製造に用いるのに適した形態とを有するニオブ粉末及び/又はタンタル粉末を製造する方法であって、ニオブ酸化物及び/又はタンタル酸化物(Nb、及び/又はTa(式中、x=1〜2且つy=1〜5))の制御された層であって、適切な純度の金属ニオブ及び/若しくは金属タンタル並びに/又はそれらの水素化物の粒子の上に慎重に形成された該層を、溶融塩の浴の中でアルカリ金属若しくはアルカリ土類金属及び/又はそれらの水素化物によって還元する唯一の工程と、その後に続く、水溶液に前記塩を溶解して、ニオブ粉末及び/又はタンタル粉末を回収する工程とを包含することを特徴とする該製造方法に関する。前記の方法を用いて生成されるこれら粒子は、小さい粒径と、大きい表面積と、スポンジ様形態とを有しており、そのために、コンデンサを製造するのに適している。
(もっと読む)


【課題】溶融した粉体状金属酸化物にカーボンを接触させて還元金属を回収するに際し、副次的に発生する高温のCOガスで含水金属酸化物を乾燥させる。
【解決手段】バーナー12から粉体状の金属酸化物と燃料と酸素とを炉中に供給し、酸素支援下に燃焼させた高温の火炎中で金属酸化物を溶融させ、この溶融した金属酸化物をカーボンと反応させて還元金属を回収する金属還元炉10において、金属酸化物とカーボンとの還元反応により生じたCOガスの供給を還元炉から受け、酸素存在下に燃焼させてCOガスをCO2ガスに転換させる燃焼装置28と、燃焼装置からの高温のCO2ガスおよび金属還元炉へ供給する前の粉体状金属酸化物の供給を受け、内部で両者を接触攪拌させて金属酸化物を乾燥させる乾燥装置34と、乾燥装置からの金属酸化物と廃ガスとを分離させ、分離後の乾燥状態にある粉体状金属酸化物を所要の貯留部32へ供給する分離装置50とから構成した。 (もっと読む)


造粒ディスクからのオーバーサイズペレットの除去装置は、同一平面上にあり、互いに平行であり、かつ水平プレート(2)に結合されている一連の円筒状ロッド(1)によって画定された鋤状工具(10)を有し、前記水平プレート(2)の中央部分は、軸方向を通り、伸縮自在のアーム(21)の先端部分に結合された垂直スリーブ(23)に選択的かつ調整可能に取り付けられるように、垂直かつ上方に突出している垂直管状アーム(3)に結合しており、前記垂直管状アーム(3)は、前記造粒ディスク(30)の近くに取り付けられており、前記造粒ディスク(30)の作動領域の上に突出しているトラス構造(20)を構成している。
(もっと読む)


有価金属を含有する鉱石から該有価金属を浸出するための方法が述べられており、この方法は、塩酸存在下において鉱石を浸出して浸出溶液中に可溶性の金属−塩化物塩を形成させる工程;二酸化硫黄を浸出溶液に添加する工程;浸出溶液から金属−硫酸塩又は金属−亜硫酸塩を回収する工程;及び塩酸を再生する工程を含む。鉱石は、酸化亜鉛鉱石のような酸化物卑金属鉱石;サプロライト性又はリモナイト性の鉱石のようなラテライト性ニッケル鉱石;硫化物鉱石又はチタン鉱石、であっても良い。有価金属は典型的に、Zn、Cu、Ti、Al、Cr、Ni、Co、Mn、Fe、Pb、Na、K、Ca、白金族金属及び金からなる群から選択される。金属−硫酸塩又は亜硫酸塩中の金属は、有価金属であってもよく、又はマグネシウムのような有価金属よりも低い価値の金属であってもよい。再生された塩酸は浸出プロセス内で再利用される。 (もっと読む)


マグネシウムタンタレートまたはマグネシウムニオベートを含有する金属粉末を提供し、かつ粉末を不活性雰囲気中でマグネシウム、カルシウムおよび/またはアルミニウムの存在下で、粉末からマグネシウムタンタレートまたはマグネシウムニオベートを除去するのに十分な温度に加熱するか、および/または、粉末を真空下で、粉末からマグネシウムタンタレートまたはマグネシウムニオベートを除去するのに十分な温度に加熱し、その際、加熱工程は任意の順序で実施する。金属粉末は、適切な焼結温度で、ペレットに成形することができ、この場合、これらは、電解キャパシタに成形することができる。 (もっと読む)


本発明は、還元鉄粉及び焼成副原料を高温塊状化し、溶融ガス化炉に供給して溶融鉄を製造する溶融鉄製造装置及び溶融鉄製造方法に関するものである。このために本発明の溶融鉄製造方法は、多段の気泡流動層から高温の還元鉄粉及び焼成副原料が混合された還元体を製造する段階、還元体を少なくとも一対の圧着成形ロールに装入する段階、一対の圧着成形ロールにより還元体を圧着成形し、圧着両面に突起が形成されて連続的に繋がった塊状体を製造する段階、塊状体を破砕する段階、破砕した塊状体を石炭充填層に装入する段階、及び石炭充填層に酸素を吹き込んで溶融鉄を製造する段階を含み、塊状体を製造する段階で、塊状体を圧着成形ロールの軸方向に垂直に長さ方向に切断した断面の長さ方向の中心線と、断面において圧着両面の最も近接した溝を互いに連結する連結線とが鋭角及び鈍角を形成することを特徴とする。溶融鉄製造装置は前述の溶融鉄製造方法を実行する装置からなる。このような本発明によれば、溶融鉄の製造工程の操業を便利にし、効率性及び生産性を向上させ、塊状体の製造時に設備稼動の柔軟性を確保できるという利点がある。
(もっと読む)


本発明は混合酸化物試料中に金属酸化物として含まれる金属の分離のための、(i)融解塩の電解質に混合酸化物を添加し、酸化物を陰極で電気分解すること(ここで陰極のポテンシャルが融解塩中に存在するカチオンからの金属の析出より酸素のイオン化を優先するように制御され、適用される電位差が他の金属酸化物を犠牲にして1金属酸化物の選択的還元を容易にするようなものである)、および(ii)遷移金属、ランタニドもしくはアクチニド系の少なくとも1種からの金属の酸化物を含んで成る残りの金属酸化物から金属を分離すること、を含んで成る方法を提供する。その方法は2種以上の金属酸化物の混合物を含んで成る混合酸化物試料に適用でき、そして特別の適用は混合ジルコニウムおよびハフニウム酸化物中に含まれるジルコニウムおよびハフニウムの分離にあり、そこでハフニウムの除去は原子力発電産業における使用のための燃料被覆加工におけるジルコニウムの使用を容易にする。 (もっと読む)


バルブメタル粉末をカルシウム、バリウム、ランタン、イットリウムまたはセリウムで処理することによる、バルブメタル粉末、殊にニオブ粉末、タンタル粉末またはこれらの合金の脱酸素、ならびに3ppm/10000μFV/g未満のナトリウム、カリウムおよびマグネシウムの含量の総和と比静電容量との比を示すバルブメタル粉末。 (もっと読む)


【解決手段】単一の炭素熱反応器/炉(11)を用いてアルミニウムを製造するプロセスであって、前記反応器/炉は、反応器の側部の下部に抵抗加熱式電極(16)(13)を具える単一の中空反応室を有しており、Al23とC(カーボン)を加えることで操業を開始し、前記混合物を溶融させて、約1875℃〜2000℃の(Al23−Al43)スラグを生成し、炉(11)の温度を上げて、上部にC量が6〜8重量%のAl相と底部にスラグ相(22)を生成し、次に、Al23をAl−C/スラグ(21)(22)に加えてAl23リッチのスラグを生成し、反応物の温度を下げて、脱炭反応(ステップ30)を生じさせて、上部にCが5重量%未満のAl相を生成し、ステップ(40)を経て、前記Alを取り出す。残りのスラグは開始物質として用いられる。 (もっと読む)


処理される供給混合物(例えば、鉄を含んだぺレット、チップおよび粉塵)内の目的物から微粉を分離するために装置、方法およびシステムが用いられる。例えば、流路を規定するエンドレスベルトの少なくとも一部が水平に対して傾斜(例えば、目的物に関連した安息角より大きいけれども除かれる微粉に関連した安息角より小さい水平に対しての角度にある傾斜)を上へ移動可能である。さらに、傾斜を転げ落ちる微粉を妨害するために障害要素がエンドレスベルト上で使用されてよい。 (もっと読む)


【課題】 特に、酸素含有量や炭素含有量の極めて少ないスパッタリングターゲット用に適した高純度ハフニウム材の製造方法を提供する。
【解決手段】ハフニウム材を製造するにあたり、酸化ハフニウムを塩化してハフニウム塩化物を得、次いで上記ハフニウム塩化物を活性金属により還元して金属ハフニウムとし、さらに上記金属ハフニウムを減圧下で精製する。 (もっと読む)


【課題】 回転炉床法で還元鉄を製造するに際し、回転炉床式焼成還元炉のスクリュー式排出装置の刃先が摩耗する問題を軽減するための還元鉄の製造方法を提供する。
【解決手段】 酸化鉄含有物と炭素質物質とからなる粉状の原料を、成型して、回転炉床式焼成還元炉に装入し、1100〜1400℃に加熱して、該酸化鉄を還元し、その後スクリュー式排出装置にて排出する際に、回転炉床式焼成還元炉の炉床上に固着する固着物の気孔率を25%以上にすることを特徴とする (もっと読む)


141 - 160 / 173