説明

Fターム[4K001BA24]の内容

金属の製造又は精製 (22,607) | 原料 (3,914) | その他 (256)

Fターム[4K001BA24]に分類される特許

121 - 140 / 256


【課題】グラビア版の再版時に発生する銅及びクロムメッキ層から銅を効率よく分離し、再利用する方法を提供すること。
【解決手段】使用後のグラビア版の鉄芯から、銅メッキ層とクロムメッキ層とからなるバラード層を剥がし、前記バラード層を濃度30〜40重量%の硫酸曹にてクロムメッキ層のみ溶解させ、前記バラード層のうち溶解しなかった銅メッキ層を、陰極側をナトリウムイオンを通すが銅イオンを通さないイオン交換膜で保護した塩水電極曹にて通電することで、陽極付近に銅イオンを濃縮し、水酸化ナトリウム水溶液を追加して水酸化銅を析出させ、水酸化銅を銅メッキ槽に添加して、銅として回収使用する。 (もっと読む)


【課題】還元溶融炉を利用した処理物からの金属回収方法において、溶融スラグや溶融メタルや溶融飛灰中に含まれる各種の金属を、効率よく回収し利用できる方法を提供する。
【解決手段】金属を含む処理物とカーボン質物質とを還元溶融炉によってごみ焼却灰を溶融処理する際、ごみ焼却灰中の塩素分濃度と、溶融物の温度と、溶融物を取り出す時間間隔とを制御することによって溶融スラグ、溶融メタル及び溶融飛灰に含まれる各種金属の分配率を制御する。 (もっと読む)


【課題】透明性と導電性を両立できる銀ナノワイヤー、及び水溶媒中で該水溶媒の沸点以下の温度で製造する銀ナノワイヤーの製造方法、並びに該銀ナノワイヤーを含有し、塗布後の保存安定性及び分散安定性が向上した水性分散物、及び透明導電体の提供。
【解決手段】水溶媒中で銀錯体を該水溶媒の沸点以下の温度で加熱することを特徴とする銀ナノワイヤーの製造方法である。銀錯体が、銀アンモニア錯体である態様、水溶媒の沸点以下の温度に加熱する態様、還元糖類を還元剤として用いる態様、などが好ましい。 (もっと読む)


【課題】フェロコークスを製造するに際して、乾留工程における成型物の変形や熱割れを抑制させ、乾留炉出側での原形歩留まり、ハンドリング強度を向上させることのできる新たなフェロコークスの製造方法を提供する。
【解決手段】石炭30、鉄源原料31およびバインダーを含む成型用原料を成型した成型物を乾留してフェロコークスを製造する際に、乾留した成型物を篩い4で篩い分けして、製品フェロコークスと金属鉄を含むコークス粉とに分離し、該金属鉄を含むコークス粉を前記成型物の成型用原料として用いることを特徴とするフェロコークスの製造方法。金属鉄を含むコークス粉の粒径が6mm以下であること、石炭30と鉄源原料31との合計量に対して、0.5質量%〜8質量%を用いること、竪型シャフト炉3を用いて成型物を乾留することが好ましい。 (もっと読む)


無機金属前駆体のリサイクルおよび精製のための方法ならびに装置。四酸化ルテニウムを含む第1のガス流が提供され、固相の低級ルテニウム酸化物へと変換される。この低級ルテニウム酸化物は水素で還元されて金属ルテニウムを生じる。金属ルテニウムは酸化性混合物と接触し、四酸化ルテニウムを含む流を生じ、残留するあらゆる酸化性混合物は蒸留によってこの流から除去される。 (もっと読む)


【課題】アルシンを除害処理した活性炭から簡単な操作により高純度の金属ヒ素を回収する方法を得ることにある。
【解決手段】反応管1の加熱領域Aにアルシンを除害処理した活性炭を置く。加熱用ヒータ4を作動させつつ、反応管1内に窒素などの不活性ガスを流し、加熱領域Aの温度を600〜800℃とする。活性炭からガス状の金属ヒ素が生成し、これが冷却領域Bで凝固し、金属ヒ素を回収する。 (もっと読む)


【課題】ドワイトロイド型の上吹き焼結機で、硫化亜鉛及び硫化鉛を含有する硫化物原料とともに、酸化亜鉛及び酸化鉛を含有する酸化物原料を含む装入原料を焼結する方法において、酸化物原料を増処理する際に、必要な発熱量を確保することにより、焼結塊の生成において良好な生産性と残留するカドミウム等の品質を向上することができる酸化物原料を含む硫化物原料の焼結方法を提供する。
【解決手段】前記装入原料として、前記硫化物原料と前記酸化物原料を混合工程で混合解砕に付し、次いで造粒工程に付して製造したペレットを用いる際に、該装入原料に、粒径が5〜20mmであって、該酸化物原料の装入量に対し1〜5質量%に当たる粒状コークスを添加することを特徴とする。 (もっと読む)


【課題】鉛アノードスライムを塩素浸出して産出される浸出残渣を原料として、後続の湿式法により銀粉を回収する製錬方法において亜硫酸塩水溶液等の浸出液で浸出する際、スラリーのろ過不良を解消することができる鉛アノードスライムの塩素浸出方法を提供する。
【解決手段】銀とその他の有価金属を含む鉛アノードスライムを塩素浸出する方法であって、下記の(1)〜(3)の工程を含むことを特徴とする。(1)前記鉛アノードスライムを100〜350℃の温度で焙焼に付し、焙焼物を得る。(2)前記焙焼物を酸性水溶液中に懸濁させたスラリーを形成する。(3)前記スラリー中に塩素ガスを吹込み、塩素浸出に付し、塩化銀の形態で銀を含む浸出残渣と有価金属を含む浸出液とを得る。 (もっと読む)


【課題】廃棄される金箔貼付品(表面に金箔を貼り付けた祭祀用具や置物など)から金箔を剥離して金を回収する簡単で経済的な方法を提供する。
【解決手段】金箔貼付品5の表面から金箔を水に分散した小さな金箔片にして剥離する第1工程と、水に分散した金箔を分離する第2工程とを備えている。第1工程では、金箔貼付品5の金箔貼付面に水溶性粉体と高圧水とを噴射して金箔を微細片にして剥離する。剥離した金箔片は、噴射された水に分散した状態で流下する。第2工程は、流下した水から金箔片を分離する工程である。この工程では、フィルター8が用いられ、水とこれに溶融した粉体はフィルター8を通過し、水に分散している金箔片は、フィルター8に捕捉される。遠心分離機などで金箔片を分離する工程としてもよい。 (もっと読む)


【課題】窒化物をその融点よりも低い温度で溶解して、窒化物を構成する元素を分離したり、分離した元素を含む他の合金を生成したり、分離した元素を回収して再利用できるようにする。
【解決手段】窒化物の溶解方法は、窒素とその他の元素から構成される固体の窒化物、例えばAlN結晶を用意する。その後、窒化物の元素よりも電気陰性度の小さい金属の単体又は金属の混合物の融液を用意する。例えば(Na−Li)の混合融液を用意する。その後、融液の中に、窒化物を入れて加熱することによって、窒化物を溶解する。例えばAlN結晶を(Na−Li)の混合融液に入れて溶解する。これにより、AlN結晶の融点は2000℃以上であるが、870℃で溶解した。 (もっと読む)


【課題】鉄鉱石粉、焼結返鉱、副原料、固体燃料、その他を配合した焼結原料の造粒方法において焼結原料の造粒性を改善し、焼結中の充填層下部の水分凝集帯(湿潤帯)においても擬似粒子の崩壊を抑制し、焼結鉱の生産性を向上させる。
【解決手段】鉄鉱石粉、焼結返鉱、副原料、固体燃料、その他を配合した焼結原料を1次ミキサー2に投入して水を加え撹拌混合する。得られた混合原料は2次ミキサー3に向けて搬送され、搬送途中でもみ殻を0.01〜2重量%を添加し、2次ミキサー3にて混練して一時ミキサー2で造粒されずに残った焼結原料の微粉をもみ殻の空隙に入れ造粒させて粒度及び強度を増大させる。 (もっと読む)


【課題】銅の溶出を抑制しつつ脱塩素と亜鉛溶出を進めることができる溶融飛灰等の処理方法を提供する。
【解決手段】有価金属成分および塩素成分を含む溶融飛灰を水浸出して脱塩素処理した後に、その固形分を硫酸浸出して有価金属を溶出させる処理方法において、上記硫酸浸出工程で脱塩素処理後の固形分と硫酸性溶液とを混合したスラリーのpHを4以上〜5.4以下、酸化還元電位を300mV以下、好ましくはスラリーのpHを5以上〜5.4以下、酸化還元電位を200〜300mVに制御することによって銅の溶出を抑制しつつ脱塩素と亜鉛溶出を進めることを特徴とする溶融飛灰等の処理方法。 (もっと読む)


【課題】海水中或いは地熱熱水から、リチウムに対する選択吸着性に優れるとともに吸着速度が高くかつ吸着量の大きく、化学的に安定であり吸着・脱着の繰り返しが可能な吸着剤を用いて少なくともリチウム、ナトリウム及びカルシウムを含む水溶液からリチウムのみを効率良く回収する方法を提供すること。
【解決手段】β−ジケトン、中性有機リン化合物および環状構造を有するビニルモノマーを原料として製造される吸着剤と、少なくともリチウム、ナトリウム及びカルシウムを含有する水溶液とを、水溶液のpHが7以上において接触させて該吸着剤に水溶液中の金属成分を吸着させ、しかる後にpH4±1.5の水と接触させてリチウムを脱着させることからなるリチウムを回収する方法。 (もっと読む)


【課題】純チタンをベースに窒素含有率を意図的に高めたチタン合金の溶製方法であって、チタン合金中の窒素含有率のみを、安価な方法で、しかも効果的に上昇させることができるチタン合金の製造方法を提供する。
【解決手段】チタン材と合金添加剤との混合原料を原料供給器に充填し、混合原料を電子ビーム溶解炉に供給するチタン合金の製造方法であって、混合原料を充填した原料供給器内を水の沸点以上に加熱保持し、さらに、減圧下に保持した後、混合原料を電子ビーム溶解炉に供給する。 (もっと読む)


本発明は、以下の操作工程を含む、脱硫された鉛パステルから出発した、金属鉛を製造するための電気分解的方法に関する。
a)脱硫したパステルを、塩化アンモニウムを含む溶液と接触させることにより脱硫したパステルを溶脱し、溶脱液体を形成させ及びCO2ガスを発生させる工程、
b)第一の固形物残渣と第一の浄化された溶脱液体を、工程a)からの溶脱液体から分離する工程、
c)塩化アンモニウム及び過酸化水素を含む溶液と接触させることにより、工程b)において分離された固形物残渣を溶脱する工程、
d)第2の固形物残渣及び第2の浄化された溶脱液体を、工程c)からの溶脱液体から分離する工程、
e)工程b)からの第1の浄化された溶脱液体と、工程d)からの第2の浄化された溶脱液体とを合わせて、単一の溶液を形成する工程、
f)工程e)を離れた溶液を、50〜10,000A/m2の範囲の電流密度を用いて、フローセル中で電気分解させ、前記電気分解が鉛スポンジをもたらす工程。本発明は、パステルの相対的な脱硫方法にも関する。 (もっと読む)


【課題】コスト効率良く、ルテニウム(Ru)及びRuベース合金を再生する。
【解決手段】ルテニウム(Ru)の固体又はRuベースの合金を供給するステップと、前記固体を分割して微粒子材料を形成するステップと、前記微粒子材料から鉄(Fe)を含む汚染物質を取り除くステップと、前記微粒子材料の粒径を小さくして粉末材料を形成するステップと、前記粉末材料から鉄(Fe)を含む汚染物質を取り除くステップと、前記粉末材料の酸素含有量を所定レベル以下に低下させて精製された粉末材料を形成するステップと、前記精製された粉末材料から所定の大きさよりも大きい粒子を取り除くステップと、を含んで構成されたルテニウム(Ru)及びルテニウム(Ru)ベース合金の再生方法である。 (もっと読む)


【課題】鉛化合物含有使用済みPVCから鉛化合物を効率的に取り除くことができるポリ塩化ビニル材料から鉛化合物等の無機物を除去する方法を提供する。
【解決手段】裁断したポリ塩化ビニル材料(PVC)を、PVCを析出させない量の水12を添加した極性良溶媒に溶解させて、溶解液中の鉛化合物を含む無機物をゲル化したPVCで凝集させると共にそのゲル状のPVCを沈澱させるPVC溶解工程11と、沈澱したゲル状のPVC中に含有する鉛化合物を含む無機物を分離回収する遠心分離工程14からなるものである。 (もっと読む)


【課題】従来有効に利用されていない未利用資源中の金属を容易且つ迅速にそして高純度で回収することができる未利用資源からの金属回収方法及び金属回収装置を提供する。
【解決手段】ペトロコークPなどの石油系未利用資源から、ニッケルNiなどの金属を回収する未利用資源からの金属回収装置1であって、酸素供給部2と、酸素供給部2から所定量の酸素を導入してペトロコークPを燃焼させて、このペトロコークPに含まれる有機物と結合しているニッケルNiを部分酸化させる部分酸化炉4を備え、部分酸化により生じた無機化合物の堆積物である灰分TからニッケルNiを回収するべく灰分Tを部分酸化炉4から取り出し可能とした。 (もっと読む)


【課題】錫の他に銅などを含む錫含有物から安価且つ効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】錫と銅を含む錫含有物の粉末を、苛性ソーダ水溶液に添加して、この苛性ソーダ水溶液に酸素を吹き込みながら撹拌して、酸化浸出により錫を含む浸出液を得た後、この浸出液を電解液として使用して電解採取により錫を回収する。錫と銅を含む錫含有物の粉末の粒径が100μm以下であるのが好ましい。また、浸出が終了した際の苛性ソーダ水溶液中のNaOH濃度が40〜150g/Lであるのが好ましく、浸出の際の苛性ソーダ水溶液の温度が70〜100℃であるのが好ましい。さらに、電解採取前に浸出液に錫を添加して浸出液中の鉛を除去するのが好ましい。 (もっと読む)


【課題】従来有効に利用されていない未利用資源中の金属を容易且つ迅速にそして高純度で回収することができる未利用資源からの金属回収方法及び金属回収装置を提供する。
【解決手段】ペトロコークPなどの石油系未利用資源から、ニッケルNiなどの金属を回収する未利用資源からの金属回収装置1であって、水蒸気を導入して成る還元雰囲気中でペトロコークPに含まれる有機物と結合しているニッケルNiを揮発させてガス化する金属揮発炉4と、金属揮発炉4で生じたガスGaを冷却してニッケルNiを回収可能とするガス精製部5と、還元雰囲気中でガス化しなかったニッケルNiを部分酸化させる部分酸化炉8を備えている。 (もっと読む)


121 - 140 / 256