説明

Fターム[4K001DB21]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 金属析出 (312) | 電解還元 (149)

Fターム[4K001DB21]に分類される特許

1 - 20 / 149



【課題】硫化鉱物から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制可能な方法を提供する。
【解決手段】硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程を含み、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持する。 (もっと読む)


【課題】比較的弱い酸及びアルカリを用いて、酸化物半導体に含まれる金属を回収することが可能な技術を提供することを目的とする。
【解決手段】金属回収方法は、破砕ガラス7の配線金属を、第1電解液14aを用いて溶解する電解酸化を行う工程と、その後の破砕ガラス7のITOを、第2電解液14bを用いて還元してIn,Snを生成する電解還元を行う工程とを備える。そして、金属回収方法は、その後の破砕ガラス7を第3電解液14cに浸漬させて、In,Snを第3電解液14cに溶解した後、当該第3電解液14cからIn,Snを回収する工程を備える。 (もっと読む)


【課題】大量の金属溶解液からレアメタルを回収する場合でも、回収処理に用いる薬液の使用量を低減することができ、廃棄物の発生量が少なく、経済性に優れた金属回収方法を提供する。
【解決手段】実施形態の金属回収方法は、金属イオン吸着体2に金属溶解液1中の金属イオンを吸着させて回収する金属イオン吸着工程3と、金属イオン吸着体2に吸着させた前記金属イオンを溶離剤5によって溶離させる金属イオン溶離工程6と、前記金属イオンを含む溶離剤5を電気分解して金属成分を回収する電気分解工程8と、金属成分が回収された溶離剤5を回収する溶離剤回収工程10と、を有する。 (もっと読む)


【課題】銅と鉄とが共存する硫化鉱物から、効率良く且つ経済的に高品位の銅を回収する方法を提供すること。
【解決手段】本発明の銅及び鉄を含有する硫化鉱物から銅を回収する方法は、銅及び鉄を含有する硫化鉱物を微粉砕する粉砕工程S1と、この粉砕工程S1にて得られた硫化鉱物の粉末を溶液に懸濁した後、105〜180℃の温度にて、高圧下で酸素と接触させ、銅を浸出させる銅浸出工程S2と、この銅浸出工程S2にて得られた浸出液に中和剤を添加し、鉄を沈殿させる鉄沈殿工程S3と、この鉄沈殿工程S3にて得られたスラリーを固液分離処理し、銅を含有する溶液を得る固液分離工程S4と、上記銅を含有する溶液を電解始液として電解採取処理し、銅を回収する銅回収工程S5と、を有することを特徴とする。 (もっと読む)


【課題】低濃度から高濃度のパラジウムイオンを含有する溶液から短時間で、且つ、高選択率でパラジウムイオンが分離できるパラジウム分離剤、及びパラジウムの分離方法を提供する。
【解決手段】一般式(1)で示される官能基が担体に結合しているパラジウム分離剤を用いる。


(1)(式中、Rは炭素数1〜18の鎖式炭化水素基、炭素数3〜10の脂環式炭化水素基、炭素数6〜14の芳香族炭化水素基、カルボキシメチル基、又はカルボキシエチル基を表し、nは1〜4の整数を表す。Zはアミド結合を表す。) (もっと読む)


【課題】銅イオンを含む塩化ニッケル水溶液から銅イオンを固定除去する方法において、塩化ニッケル水溶液中の銅濃度を低濃度域まで低減させると同時に、発生する硫化物の微細化を抑制して硫化物のろ過性を向上させることができる銅イオンの除去方法及びその銅イオン除去方法を適用した電気ニッケル製造方法を提供する。
【解決手段】銅イオンを含む塩化ニッケル水溶液に硫化ニッケルを添加して銅イオンを還元する還元工程S21と、還元工程S21を経て得られたスラリーに硫化水素を供給し、還元された銅イオンを硫化銅として固定化する銅イオン固定化工程S22と、銅イオン固定化工程S22を経て得られたスラリーを固液分離する固液分離工程S23とを有する。 (もっと読む)


【課題】金属の湿式製錬のプロセス系内に保有する銅量を低減させた状態でも、金属硫化物からの金属成分の浸出反応を促進させることができる金属硫化物の塩素浸出方法、並びにその塩素浸出方法を利用した金属の湿式製錬方法を提供する。
【解決手段】金属硫化物を原料として銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の塩化物イオン濃度を350g/L以上に調整して塩素浸出する。 (もっと読む)


【課題】設備コストや作業負荷をかけることなく効率的に塩素浸出反応を促進させて、高い浸出率でニッケル混合硫化物から金属成分を浸出させることができる金属硫化物の塩素浸出方法を提供する。
【解決手段】金属硫化物を原料として、銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の塩濃度を270g/L以上350g/L以下に調整して塩素浸出する。 (もっと読む)


【課題】インジウム−亜鉛酸化物(IZO)スパッタリングターゲット又は製造時に発生するIZO端材等のIZOスクラップから、インジウム及び亜鉛を効率良く回収する方法を提供する。
【解決手段】アノード及びカソードの双方にIZOスクラップを使用し、極性を周期的に反転して電解することにより、インジウム及び亜鉛を水酸化物として回収することを特徴とするIZOスクラップからの有価金属の回収方法及び前記電解することにより得たインジウム及び亜鉛の水酸化物を焙焼してインジウム及び亜鉛の酸化物として回収することを特徴とする前記IZOスクラップからの有価金属の回収方法。 (もっと読む)


【課題】水系正極材ペーストから効率よく有価金属を回収できる水系正極材ペースト中の有価金属回収方法を提供する。
【解決手段】水系正極材ペーストに凝集剤を混合して、活物質、導電材およびバインダーを凝集し、凝集体と非凝集体とを分離する。凝集剤は、イオン価数が2以上の無機凝集剤である。イオン価数の高い凝集剤は凝集効果が高いため、活物質、バインダーおよび導電材と、増粘剤および分散剤とを効率よく分離できる。無機凝集剤であるので、凝集体中に有機物が取り込まれることがなく、再利用工程において有機物起因の不具合が生じることを防止できる。 (もっと読む)


【課題】原料溶液中から不純物を除去する工程を設け、溶液組成に対するロバスト性の高いレアメタルの製造方法を提供することを目的とする。
【解決手段】レアメタルの製造方法において、第1残渣液を回収する工程(S11〜S14)と、ReO4-を抽出する工程(S15,S16)と、第1溶離液に逆抽出する工程(S17)と、電解して陰電極にReを採取する工程(S18,S19)と、第2残渣液を回収する工程(S20)と、水素イオン指数をpH3以上pH5未満に調整する工程(S21,S22)と、希土類金属イオン(RE3+)を抽出する工程(S23,S24)と、第2溶離液に逆抽出する工程(S25)と、(COOH)2を添加してRE2(C24)3を沈殿させる工程(S26)と、希土類金属酸化物(RE23)に転換させる工程(S27,S28)と、溶融塩電解して陰電極に希土類金属(RE)を採取する工程(S29,S30)と、を経る。 (もっと読む)


【課題】 ニッケルとマンガンを含有する溶液から効率よく安定してマンガンを分離する処理方法を提供する。
【解決手段】 ニッケルを含有する硫化物を、塩素ガスおよび塩化物溶液を用いて浸出したニッケルを含有する塩酸酸性溶液に、還元剤を添加して得られるセメンテーション終液に、中和剤と酸化剤の添加による酸化中和処理を行い、ニッケルを含有する硫化物中の不純物を分離した後の塩化ニッケル溶液を電解採取してニッケルを得る製造工程において、その酸化中和処理の前に、予備処理工程を行う、2段階での酸化中和処理を行うことを特徴とする塩化ニッケル溶液からのマンガンの分離方法である。 (もっと読む)


【課題】従来技術よりも更に高収率で希土類元素の分離回収が可能な方法を提供する。
【解決手段】本発明は、複数種の希土類元素を分離回収する方法であって、前記複数種の希土類元素のハロゲン化物を含む混合物に対して酸素源の存在下で化学反応させることにより、または前記複数種の希土類元素の酸化物を含む混合物に対してハロゲン源の存在下で化学反応させることにより第1群の希土類元素の希土類ハロゲン化物と第2群の希土類元素の希土類オキシハライドとを化学平衡状態に到達させる工程と、前記希土類ハロゲン化物と前記希土類オキシハライドとを水中に投入することにより前記希土類ハロゲン化物を選択的に水に溶解させて液相中に抽出し、前記希土類オキシハライドを固相として残存させる工程と、前記希土類ハロゲン化物が抽出された液相と残存した前記希土類オキシハライドの固相とを固液分離することによって前記第1群の希土類元素と前記第2群の希土類元素とを分離する工程とを有することを特徴とする。 (もっと読む)


【課題】加圧浸出、直接電解採取および溶媒/溶液抽出を用いる、銅含有物質からの銅回収のための方法を提供すること。
【解決手段】本発明は、一般的には、銅および他の金属分を金属含有鉱石、濃縮物、またはその他金属物質から、加圧浸出および直接電解採取を用いて回収する工程に関する。より具体的には、本発明は、加圧浸出および直接電解採取を、浸出、溶媒/溶液抽出、および電解採取操作と組み合わせて用い、黄銅鉱含有鉱石から銅を回収するための実質的な酸の自己生産工程に関する。前記操作の一つの局面によれば、加圧浸出操作からの残留物の少なくとも一部は、ヒープ浸出、ストックパイル浸出、または他の浸出操作に向けられる。 (もっと読む)


【課題】超硬合金スクラップの結合相金属を溶出した液から、高純度のコバルトを回収することができる処理方法を提供する。
【課題手段】超硬合金スクラップを塩化第二鉄の塩酸水溶液に浸漬して該スクラップの結合相金属を溶出し(浸出工程)、溶出された結合相金属を含有する溶出液から鉄を選択的に分離し(Fe分離工程)、次いで該溶出液に硫化物と金属コバルト粉を添加して溶出液中のニッケルを硫化物沈殿にし、該ニッケル硫化物沈澱を濾過分離する(脱Ni工程)ことを特徴とする超硬合金スクラップの処理方法であり、好ましくは、脱Ni工程の後に、溶出液を電解液としてコバルトを電解採取する処理方法。 (もっと読む)


【課題】大型の設備を使用せずとも鉄、砂鉄粉を原料として銅を製造乃至元素変換する。
【解決手段】塩酸液に鉄を投入し、加熱下で攪拌しながら塩化第二鉄液を作る工程と、鉄の一部が銅に変換され、変換された銅は比重差を利用して抽出する工程と、抽出した銅を水洗浄して塩酸を除去する工程と、水洗浄した銅は硫酸銅液を電解質として銅を陰極側に抽出する工程とを備える、塩酸液濃度は、20%〜45%であって、鉄を投入した塩酸液の加熱温度は80℃〜100℃で加熱、攪拌する。厚さ1.5mm以下の鉄板の裁断片及び又は砂鉄粉を塩化第二鉄液に混合、撹拌する。 (もっと読む)


【課題】リチウムイオン二次電池の正極材料を含む焼成物を水に浸出させて得たリチウムとフッ素、硫酸等の各イオンを含有する溶解液から、連続的にリチウムの精製と濃縮を同時に行うことにより、リチウムを回収できる装置および方法を提供する。
【解決手段】電解槽において不溶性陽極と陰極間を複数の隔膜で仕切ることにより、仕切られた各室で陽イオンと陰イオンの濃度差が保持され、各室で均一な濃度が保持されたまま、陽極側から陰極側へとイオンの濃度勾配を維持できる。中間付近の室へ原液を供給し、リチウムイオン濃度の高い陰極に最寄りの室からリチウムイオン濃縮液を抜き出し、不純物イオン濃度の高い陽極に最も近い室から不純物濃縮液を排出する。 (もっと読む)


【課題】先行技術による公知の方法と比較して貴金属をより効率的に分離できる、スカベンジャー材料から貴金属を分離する方法の提供
【解決手段】本発明は、i)無機材料をベースとし、有機基によって官能化されていて、少なくとも1種の貴金属を吸着した吸着剤を含む貴金属含有組成物を準備する工程;ii)方法工程i)で準備された貴金属含有組成物を灰化して、灰化した組成物を得る工程;iii)方法工程ii)で得られた灰化した組成物を、アルカリ性水溶液中で少なくとも部分的に溶解して、貴金属含有残留物を得る工程;iv)方法工程iii)で得られた貴金属含有残留物を、酸化性水性酸中で少なくとも部分的に溶解して、貴金属塩の水溶液を得る工程;v)適切な場合に、方法工程iv)中で得られた貴金属塩の還元により貴金属を回収する工程を有する、貴金属の回収方法に関する。 (もっと読む)


【課題】ガリウムと銅を含有する原料から金属ガリウムを製造する方法において、銅を効率的に除去できる新たな金属ガリウムの製造方法を提供する。
【解決手段】ガリウムと銅を含有する原料を酸又はアルカリ溶液に溶解してガリウムイオン含有溶液とし、該ガリウムイオン含有溶液にガリウム又はガリウム含有組成物を添加して、前記ガリウムイオン含有溶液中の銅イオンとガリウムとの置換反応によって銅を析出させてこれを除去し、次に、回収したガリウムイオン含有溶液を中和することによって中和沈殿物を除去した後、回収したガリウムイオン含有溶液を電解してガリウム金属を析出させて金属ガリウムを得る工程を備えた製造方法を提案する。 (もっと読む)


1 - 20 / 149