説明

Fターム[4K013DA10]の内容

溶融状態での鋼の処理 (7,585) | 複合処理、連続処理 (691) | 複合処理 (682) | 添加剤処理を含む複合処理 (184) | 添加剤がフラックスであるもの (74)

Fターム[4K013DA10]に分類される特許

1 - 20 / 74


【課題】真空精錬方法における排ガス中の酸素濃度などの情報をより適確に利用することで、溶鋼の精錬方法を合理化する。
【解決手段】ある時点(ti)での排ガス流量測定値(Vi)を計測し、この時点(ti)において排ガス流量測定器を通過していた排ガス中の酸素質量濃度(Oi)の値を、時点(ti)において該排ガス流量測定器を通過していた排ガスが、酸素質量濃度分析計に到達するまでに要した時間(Δti)を加算した時点(ti+Δti)における酸素質量濃度分析値とする。このことで、排ガス流量測定値(Vi)を計測した時点(ti)における排ガス中酸素質量濃度の計算精度を高める。 (もっと読む)


【課題】精錬剤から発生した可燃性ガスが大気中に放出されることを可及的に抑制しつつ確実に精錬を行う。
【解決手段】本発明の精錬処理方法は、吹き込み用ランス3の吐出口6を溶鉄に浸漬させる前に、非発生精錬剤の吹き込みを開始した後、吹き込み用ランス3の吐出口6を溶鉄に浸漬させる。吐出口6の浸漬深さを50mm〜200mmとして非発生精錬剤から発生精錬剤に吹き込みを切り替える。発生精錬剤を吹き込むときの固気比を3kg/Nm3以上としてさらに吐出口6の浸漬深さを200mmより大きくする。再び吐出口6の浸漬深さを50mm〜200mmとして発生精錬剤から非発生精錬剤に吹き込みを切り替える。切り替え後の非発生精錬剤の固気比を3kg/Nm3以上とし且つ溶鉄中で1分以上吹き込むものである。 (もっと読む)


【課題】転炉出鋼後に採取した溶鋼あるいは二次精錬中の溶鋼のS濃度を迅速かつ精度よく分析することによって、高い精度で鋼のS濃度を制御することを可能とする溶鋼の脱硫方法、およびその脱硫方法を用いた溶鋼の製造方法を提案する。
【解決手段】転炉出鋼後の溶鋼あるいは二次精錬中の溶鋼から試料を採取してS濃度を分析し、その分析値に基づいて、Sの合否判定および/またはその後の脱硫処理条件を決定する溶鋼の脱硫方法において、上記S濃度を、試料を純酸素雰囲気下で高周波誘導加熱により酸化させて、溶鋼中のSをSOとする高周波誘導加熱工程と、上記高周波誘導加熱工程で生成したSO含有ガスを、紫外蛍光法で分析して試料中のS濃度を定量する分析工程を含む方法で分析することとを特徴とする溶鋼の脱硫方法および製造方法。 (もっと読む)


【課題】非金属介在物を低減させた高清浄鋼の製造方法であるESR法により、比較的Si濃度の高い高清浄鋼を安定して製造する製造方法を提供する。
【解決手段】添加元素若しくは不純物元素としてs−Alを含み、少なくとも質量%で1.0〜2.0%のSiを含有する鋼種の製造方法であって、懸下した消耗電極5を金属鋳型2中の溶融スラグ6に上部から降下させていくとともに前記消耗電極5と前記金属鋳型2との間に通電し前記溶融スラグ6上面近傍で前記消耗電極5を溶解させこの溶滴を前記溶融スラグ6中を通過させてから前記金属鋳型2の底部近傍で捕捉して前記鋼種の鋼塊9を得るESR法において、前記溶融スラグ6上面近傍を少なくとも酸素を含む不活性ガスからなる混合ガスで置換する。 (もっと読む)


【課題】転炉出鋼後から二次精錬終了前において採取した溶鋼試料のS濃度を迅速かつ精度よく分析することによって、高い精度で鋼のS濃度を制御することを可能とする溶鋼の脱硫方法、およびその脱硫方法を用いた溶鋼の製造方法を提案する。
【解決手段】転炉から出鋼した溶鋼を二次精錬する方法において、精錬中の溶鋼から採取した試料のS濃度を分析し、その分析値に基づいて、その後の脱硫処理条件を決定するに当たり、上記S濃度の分析を、試料を純酸素雰囲気下で高周波誘導加熱により酸化させて、溶鋼中のSをSOとする高周波誘導加熱工程と、上記高周波誘導加熱工程で生成したSO含有ガスを、紫外蛍光法で分析して試料中のS濃度を定量する分析工程を含む分析方法で行う溶鋼の脱硫方法および製造方法。 (もっと読む)


【課題】鋼中の酸化物組成をCaO−Al−MgO系に制御することで転動疲労寿命の長い高清浄度鋼を提供することに加え、その溶製方法を提供する。
【解決手段】mass%で、C濃度:0.85〜1.2%、Sol.Al濃度:0.020〜0.035%、Cr濃度:0.50〜2.0%、S濃度:0.0020%以下、Total O濃度:0.0020%以下を有するとともに、連続鋳造後の鋳片から切り出したサンプルを鏡面研磨して顕微鏡観察した際に該鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の非金属介在物を有し、該非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であるとともに、そのCa濃度が5atom%以上である非金属介在物の全個数のうち、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であることを特徴とする高清浄度軸受鋼である。 (もっと読む)


【課題】鋳型内で溶鋼との反応を抑制し、安定した操業が可能であり、かつ、鋳片の表面品質を良好に保つために、モールドフラックスを用いて、C含有量が0.1〜1.1%であるとともにMn含有量が10〜30%である高Mn鋼を連続鋳造する。
【解決手段】Mn含有量が10〜30%である高Mn鋼の連続鋳造用モールドフラックスである。高Mn鋼のMn含有量(Mn)に対する連続鋳造用モールドフラックスのMnO含有量(MnO)の比{(MnO)/(Mn)}は、0.25〜1.2であるとともに、塩基度(T.CaO/SiO)が0.80〜1.6である。 (もっと読む)


【課題】 ストラス寿命試験の10%破断寿命(B10寿命)が5×107回以上となる高疲労寿命の高疲労強度鋼鋳片の製造方法を提供する。
【解決手段】 高炉で溶製された溶銑を転炉で脱炭精錬して溶鋼を溶製し、該溶鋼を転炉から取鍋に出鋼し、その後、取鍋内の溶鋼に加熱攪拌処理を施した後に真空脱ガス処理を施し、次いで、得られた溶鋼を連続鋳造機で連続鋳造して高疲労強度鋼の鋳片を製造するにあたり、前記出鋼後に取鍋内の転炉スラグを取鍋から除滓し、該転炉スラグの除滓後、取鍋内に媒溶剤を添加して、該媒溶剤の添加によって生成される取鍋内スラグの組成を、比[質量%CaO/質量%SiO2]が6.0〜12.0、比[質量%CaO/質量%Al23]が1.5〜3.0、MgO含有量が4.0質量%以下、TiO2含有量が1質量%以下で、且つ、取鍋内スラグの1600℃での粘度を1.3〜2.0poiseに調整し、前記加熱攪拌処理を実施する。 (もっと読む)


【課題】 比較的簡便に製造可能で、特にフッ素を含有しなくても高効率で溶融鉄の脱硫処理を可能にする脱硫剤を提供する。
【解決手段】 上記課題を解決するための脱硫剤は、CaOを主成分とする粉状の石灰と、溶鉱炉で溶銑を製造する際に副産物として生成されるスラグを固化させた後に粉砕処理することにより得られた固体粉状物質と、を混合することにより製造されたことを特徴とする。この場合に、前記固体粉状物質と前記石灰との配合質量比(固体粉体物質の配合量(質量%)/石灰の配合量(質量%))を0.05以上1.0以下とする、前記固体粉状物質の平均粒子径を15μm以下とする、前記脱硫剤の塩基度((質量%CaO)/(質量%SiO2))を3.5以上とすることで、より一層脱硫効率が向上する。 (もっと読む)


【課題】 転炉出鋼後の低硫鋼の硫黄含有量が目標硫黄濃度の上限を外れた場合などに、RH真空脱ガス装置において、製造コストの上昇を抑え且つ安定して溶鋼中の硫黄濃度を目標上限値以下に低減する。
【解決手段】 RH真空脱ガス装置1の真空槽5の頂部に設けた上吹きランス13から真空槽内の溶鋼湯面に向けて、CaO及びAl23を主成分とするプリメルトフラックスを脱硫用フラックスとして搬送用ガスとともに吹き付けて溶鋼3を脱硫する、溶鋼の脱硫方法において、前記脱硫用フラックスの吹き付け前に、CaO及びMgOを主成分とするフラックス、または、CaOを主成分とするフラックスとMgOを主成分とするフラックスとを、CaO純分及びMgO純分の添加量をともに溶鋼トンあたり0.5kg以上2.5kg以下の範囲内として、真空槽内の溶鋼に添加する。 (もっと読む)


【課題】Alキルド鋼溶製用の高Al2O3含有耐火物からなる取鍋を用いても、高い生産性で低Al鋼を溶製可能な方法を提供する。
【解決手段】質量%で、C:0.03-1.2%、Si:0.03-0.8%、Mn:0.1-2.5%、P:0.01%以下、S:0.150%以下、sol.Al:0.005%以下、Ti:0.1%以下、Ca:0.0020%以下、O:0.0050%以下およびN:0.001-0.03%を含有し、残部がFeおよび不純物からなる低Al鋼の溶製方法であって、取鍋がAl2O3を55質量%以上含有する耐火物からなり、前記取鍋の鋼浴部の面積A[m2]と前記取鍋に収容される溶鋼の体積V[m3]の比A/Vが2.5[m2/m3]以下を満足し、溶鋼の攪拌時の攪拌エネルギーKが0.3[MJ/t]以下を満足、または、溶鋼のガス攪拌および溶鋼の環流操作に伴う攪拌動力密度εLが130[W/t]以下を満足する。 (もっと読む)


【課題】RH真空脱ガス装置を用いた溶鋼の脱硫方法を提供する。
【解決手段】RH真空脱ガス装置の真空槽内の溶鋼に、該RH真空脱ガス装置に付設された投射ランスから脱硫フラックスを投射して、溶鋼の脱硫を行うにあたり、前記RH真空脱ガス装置に付設された真空排気装置のコンデンサーの冷却水を分析し、好ましくはpH値を測定し、この値をフィードバックして、脱硫フラックスの投射量を調整する。得られたコンデンサー冷却水の分析値に基づき、予め求めた、コンデンサー冷却水の分析値とコンデンサー冷却水中に溶解した脱硫フラックス量との関係から、さらに追加すべき脱硫フラックスの投射量を算出して、脱硫フラックスの投射量を調整することが好ましい。これにより、溶鋼中S量の的中率が向上し、溶鋼のS量ばらつきが低減して、溶鋼歩留りが顕著に向上する。 (もっと読む)


【課題】脱硫処理の開始から終了まで溶鋼中のAl含有量を高く保持して、溶鋼中のO活量の上昇を抑制することによって、脱硫反応の進行を促進し、低硫鋼を安定して得られる精錬方法を提供する。
【解決手段】真空脱ガス槽2の頂部に設けたランス7から酸化カルシウムおよび酸化アルミニウムを主成分とする脱硫用フラックス8を、キャリアガス,燃料ガス9および酸化性ガス10とともに噴射して真空脱ガス槽内の溶鋼3に吹き付ける精錬方法において、脱硫用フラックス8の供給速度を溶鋼トンあたり0.5〜0.8kg/分とし、かつ脱硫用フラックス8を吹き付ける前の溶鋼のAl含有量[%Al]MEを([%Al]SP+0.025M)以上とする。 (もっと読む)


【課題】RH式真空脱ガス処理装置を用いた脱ガス処理において硫黄濃度を簡便かつ安価に低減する鋼の溶製方法を提供する。
【解決手段】質量%で、Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.0035%以下、Al:0.005%以上1%以下、その他合金成分を含む溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上を添加したのち、CaOを主体とするフラックスを真空槽内から上吹きランスを介さずに一括で1分以内に添加する。 (もっと読む)


【課題】転動疲労寿命の長い軸受材料を提供すると共に、該軸受材料の製造方法を提供することを目的とする。
【解決手段】被検面積が3000mmである場合に、(長さ×幅)1/2で算出される介在物平均径が3μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり100個以下、前記介在物平均径が10μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり2個以下で、且つ、前記介在物平均径が3μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の全体の90%以上が、酸化マグネシウム濃度が5質量%以下である軸受材料は、転動疲労寿命が優れている。 (もっと読む)


【課題】取鍋内の溶鋼を減圧した真空槽に環流して精錬を行う溶鋼精錬において、粉体脱硫剤を溶鋼に添加して脱硫精錬を行うに際し、優れた脱硫率を維持しつつ、鋼板中のA系介在物を低減することのできる溶鋼精錬方法を提供する。
【解決手段】取鍋内の溶鋼を減圧した真空槽に環流して精錬を行う溶鋼精錬において、粉体脱硫剤を溶鋼に添加して脱硫精錬を行った後、真空槽内で酸素ガスを溶鋼に吹き付けることによって溶鋼中のAlを燃焼させ、さらに取鍋と真空槽の間で溶鋼を環流する。これにより、脱硫剤として粒径の小さな粉体脱硫剤を用いたとしても、熱延鋼板にA系介在物が発生することがなく、復硫を抑制しつつ、加工性の良好な極低硫鋼を製造することができる。 (もっと読む)


【課題】脱硫材が溶鋼中に懸濁しているAl23と合体しても、脱硫効率が落ちない溶鋼の脱硫方法を提供する。
【解決手段】二次精錬設備で、脱硫の時間経過に従って、Al23の濃度を増加させた脱硫材を用いることを特徴とする溶鋼脱硫方法で、特に、脱硫開始から3〜5分まで、CaO:68質量%以上、かつ、Al23/CaO:0.11〜0.25、MgO:0〜10質量%、SiO2:0〜5質量%、及び、その他不可避的に混入する成分を含む脱硫材を使用し、その後、CaO:51質量%以上、かつ、Al23/CaO:0.25〜0.67、MgO:0〜10質量%、SiO2:0〜5質量%、及び、その他不可避的に混入する成分を含む脱硫材を使用する。 (もっと読む)


【課題】コールドクルーシブル式誘導溶解法を利用した酸化精錬技術において、少なくとも炭素およびCaを含む不純物元素を合金中から除去できる方法を明示すること、および、この酸化精錬技術を、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための方法を明示すること。
【解決手段】精錬剤は、酸化鉄とCaハライド組成フラックスとの混合物である。Caハライド組成フラックスは、例えばフッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF-CaOである。酸化鉄の添加重量を、合金溶湯プール6中の炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2倍以上、4.0倍以下とする。また、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とする。精錬工程では、チャンバー内の排気状態を15分以上保持する。 (もっと読む)


【課題】コールドハース式電子ビーム溶解法における、酸化剤として酸化鉄などを用いる酸化精錬技術において、不純物元素である炭素を合金中から除去できる方法を明示すること、および、この酸化精錬技術を、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための方法を明示すること。
【解決手段】コールドハース式電子ビーム溶解装置11の水冷銅製皿状容器9に合金原料を供給して、5×10−4mbarよりも低い気圧下において合金溶湯プール13を形成する。その後、水冷銅製皿状容器9内の合金溶湯プール13に酸化鉄を添加して、不純物元素である炭素を除去する。ここで、酸化鉄の添加重量を、合金溶湯プール13中の不純物元素である炭素を全量酸化させるために算出される算出重量の1.0倍以上、4.0倍以下とする。 (もっと読む)


【課題】芯金に曲がっている部分を有するランスパイプであって、粉末など固体の溶湯処理剤を導入しても芯金が損耗し難く、且つ容易に製造することができるランスパイプを提供する。
【解決手段】金属製で円管状の芯金10、及び、芯金の外周面を被覆する耐火物層20を備え、固体の溶湯処理剤を溶融金属に供給するランスパイプ1であって、芯金は、溶湯処理剤が導入される導入口21から直線状に伸びる直管部11、及び、直管部から湾曲して延設される曲管部12を備え、金金の直管部の内周面、及び、曲管部において曲管部において曲管部の湾曲に対して外側となる方向の内周面から、芯金の内径の1/20〜1/2の高さ突出している一以上の金属製の突片Pを具備する。 (もっと読む)


1 - 20 / 74