説明

Fターム[4K013FA00]の内容

溶融状態での鋼の処理 (7,585) | 制御、測定又は数値限定 (648)

Fターム[4K013FA00]の下位に属するFターム

Fターム[4K013FA00]に分類される特許

1 - 20 / 34


【課題】複雑な装置を用いずに取鍋内部の溶鋼の流れに水平方向の旋回成分を付与し得る取鍋精錬装置およびこれを用いた取鍋精錬方法を提供する。
【解決手段】この取鍋精錬装置1は、底吹きプラグ3を取鍋底面1aの中心Oから離れた位置に設置するとともに、底面1aの中心Oと底吹きプラグ3の位置を結ぶ直線Lに対して交差する方向に沿って凸条をなす整流部5を取鍋1内部の底面1aに設けた。 (もっと読む)


【課題】RH真空脱ガス装置を用いた溶鋼の脱硫方法を提供する。
【解決手段】RH真空脱ガス装置の真空槽内の溶鋼に、該RH真空脱ガス装置に付設された投射ランスから脱硫フラックスを投射して、溶鋼の脱硫を行うにあたり、前記RH真空脱ガス装置に付設された真空排気装置のコンデンサーの冷却水を分析し、好ましくはpH値を測定し、この値をフィードバックして、脱硫フラックスの投射量を調整する。得られたコンデンサー冷却水の分析値に基づき、予め求めた、コンデンサー冷却水の分析値とコンデンサー冷却水中に溶解した脱硫フラックス量との関係から、さらに追加すべき脱硫フラックスの投射量を算出して、脱硫フラックスの投射量を調整することが好ましい。これにより、溶鋼中S量の的中率が向上し、溶鋼のS量ばらつきが低減して、溶鋼歩留りが顕著に向上する。 (もっと読む)


【課題】真空脱ガス炉用浸漬管の下端側の耐火物の熱衝撃に起因する亀裂の発生を抑制し、浸漬管の寿命を向上させることを目的とする。
【解決手段】円筒形状をなす芯金20と、芯金20の内周、外周及び下端を耐火物で被覆してなる真空脱ガス炉の浸漬管1において、浸漬管1のうち、少なくとも溶鋼に浸漬される部位である下筒部32の不定形耐火物321がMgO−C質レンガよりなり、MgO−C質レンガは、MgO−C質レンガ全体を100重量部としたときに、MgOを75〜95重量部、Cを3〜9重量部、Alを0〜0.5重量部含有し、更にSi、SiC及びBCから選ばれる一種あるいは二種以上の金属を1〜16重量部含有する。 (もっと読む)


【課題】ウェア耐火物の寿命を容易にかつ精度よく予測可能な耐火物寿命予測方法の提供。
【解決手段】真空脱ガス炉1を構成するウェア耐火物21とパーマネント耐火物20との間に熱電対31を設置し、熱電対31で測定したウェア背面温度とウェア耐火物21の残厚との関係を表す温度残厚関係データをデータベースとして構築し、さらに、ウェア背面温度とチャージ回数との温度チャージ回数関係データを更新しながら構築し、温度残厚関係データと温度チャージ回数関係データとに基づいて、ウェア耐火物21が寿命の残厚となるウェア背面温度に達するチャージ回数を予測する。 (もっと読む)


【課題】 底部に攪拌用ガスの吹込みプラグを有する溶鋼精錬用取鍋において、従来に比較して格段に攪拌強度を高めることのできる溶鋼精錬用取鍋を提供するとともに、この溶鋼精錬用取鍋を使用した、強攪拌下での溶鋼の精錬方法を提供する。
【解決手段】 本発明の溶鋼精錬用取鍋1は、底部にガス吹き用の吹込みプラグ4を2つ以上有する取鍋であって、吹込みプラグの設置される取鍋底部の側壁の内径をDとしたときに、隣接する吹込みプラグの中心間の距離が、D/6以上D/4以下であることを特徴とし、本発明の精錬方法は、前記取鍋に収容された溶鋼5を、下記の(1)式により算出される溶鋼攪拌動力密度εが1000W/トン以上となる攪拌条件下で攪拌することを特徴とする。
ε=(0.0285×QAr×T/Wm)×log[1+(760×H)/(148×P)]…(1) (もっと読む)


【課題】溶鋼に対して攪拌精錬を行うことで高強度鋼線用鋼の製造するに際し、疲労性に優れた高強度鋼線用鋼を製造することができるようにする。
【解決手段】溶鋼3に対して攪拌精錬を行うことで高強度鋼線用鋼の製造する製造方法であって、精錬後の溶鋼中の[Si]を0.8〜3.0質量%に設定すると共に、精錬に使用するスラグSの塩基度を前記溶鋼の[Si]に基づいて式(1)の範囲内に設定し、攪拌精錬における攪拌動力量Eを、スラグSの塩基度に基づいて設定して攪拌精錬を行う。 (もっと読む)


【課題】滓化性を向上させることができ、脱硫反応を効率良く行うことができる鉄鋼用造滓剤及びその製造方法を提供する。
【解決手段】鉄鋼用造滓剤は、生石灰又は軽焼ドロマイトよりなる粒状体の表面にフッ化カルシウムが結合されて存在し、前記フッ化カルシウムの存在量がフッ化カルシウムと生石灰又は軽焼ドロマイトとの合計量に対して8〜35質量%のものである。粒状体としては、生石灰よりなるものが好ましい。また、粒状体は2〜30mmの粒子径を有していることが好ましい。係る鉄鋼用造滓剤は、生石灰又は軽焼ドロマイトよりなる粒状体を600〜1100℃に加熱した状態で有機フッ素化合物と接触させて有機フッ素化合物を分解させ、分解して生成したフッ素を生石灰又は軽焼ドロマイトと反応させることにより製造される。有機フッ素化合物としては、ハイドロフルオロカーボンが好ましい。 (もっと読む)


【課題】 吹き込み流量の可変域を大きくすることが可能であって、しかも、作製コストが安価である環状羽口において、吹き込みガス流量を増加させたときでも損耗速度を低減することのできるガス吹き込み羽口構造を提供する。
【解決手段】 上記課題は、管体部5と該管体部の内側に設けられる軸心部2とを有し、管体部と軸心部との間の環状の間隙からガスを噴出する環状羽口1と、前記管体部に接触した状態で前記羽口の周囲に配置される羽口耐火物7と、で構成されるガス吹き込み羽口構造において、前記羽口耐火物を、500℃〜1300℃における曲げ強度が4MPa以上であり、且つ、耐火物を1400℃に昇温して氷水中に浸漬する耐スポーリング試験後の曲げ強度が3MPa以上である炭素含有耐火物とするガス吹き込み羽口構造によって解決される。 (もっと読む)


【課題】 ステンレス鋼のLF精錬の操業時にCaSiワイヤーを溶鋼に投入することによりCa添加量を調整する方法において、CaSiワイヤーの投入速度を改善し、Ca添加の歩留りを向上させることによりCaSiワイヤーの投入量を低減させる方法を提供することである。
【解決手段】 電気炉で原料のスクラップを溶解および精錬し、得られたステンレス鋼の溶鋼をさらに取鍋精錬し、この精錬の終期にCaSiワイヤーを溶鋼中に投入してCa添加を行って溶鋼の成分を調整する。すなわち、CaSiワイヤーの投入速度を最適の100m/mmの速度にすることで、投入したCaSiワイヤーを取鍋底部に到達させて順次に溶解せしめ、溶鋼中へのCa添加量の歩留りを最大の6.7%に向上させた。 (もっと読む)


本発明は、冶金プロセスにおいて廃ガス流量を間接的に決定する方法に関する。この目的のため、標準ガスと廃ガスとの完全な混合が行われるように、すなわち実質的に均質な分布が得られるように、具体的には流れに関してサンプルの採取より十分に先行する時点で、ヘリウムなどの標準ガスを最初に廃ガスに加え、ヘリウムの添加量を考慮しながら、質量分析計による測定によって廃ガスのヘリウムおよび窒素の定量分析を行う。
(もっと読む)


【課題】真空脱ガス工程における復硫現象を抑制する技術を提供する。
【解決手段】(a)取鍋精錬〜真空脱ガスの溶鋼温度[℃]を1560〜1660とし、(b)取鍋精錬終了〜真空脱ガス開始の時間[min]を60以下とする。(c)攪拌動力[Watt/ton]を15〜110とし、(d)環流流量[ton/min]を130〜195とする。(e)Al投入量[kg/ton]を0.5〜2.0とし、(f)酸素吹付量[Nm3/ton]を0.4〜2.0とする。(g)取鍋精錬工程終了〜真空脱ガス工程終了のスラグ厚み[mm]を200〜400とし、下記式を満足する。(h)取鍋精錬工程におけるスラグ組成を所定の組成とし、スラグ融点を取鍋内溶鋼の温度以下とする。
TL≧11667 L2-9117 L+3030
TL[℃]:前記スラグの液相線温度、L[m]:前記スラグの厚み (もっと読む)


【課題】鋳型内での凝固を安定に促進して、高速鋳造を安定化することができる鋼の連続鋳造用モールドフラックスを提供する。
【解決手段】本発明に係る鋼の連続鋳造用モールドフラックスは、鋳型表面材に対する溶融フラックスの1140℃における濡れ角θ(°)が、フラックスの結晶化温度Tcs(℃)の関数として、次式で与えられることを特徴とするものである。
0.12(Tcs−800)≦θ≦70 (もっと読む)


【課題】溶鋼中に浸漬させたランスを通して、Mgを高濃度で安定的に、かつ高い歩留まりのもとに添加することのできる方法を提供する。
【解決手段】溶鋼に浸漬させた浸漬ランスを通して、Mgを含有するワイヤーまたはロッドをキャリアガスとともに該溶鋼中に供給する方法において、Mgの添加速度を下記(1)式により定められる範囲とし、かつ、Mgの添加速度とキャリアガスの流量との比を下記(2)式に定められる範囲とすることを特徴とする溶鋼へのMgの添加方法。
2.0≦V≦70 ・・・・(1) 0.40≦R≦7.0 ・・・(2) ここで、Vは溶鋼1トン(t)当たりのMgの添加速度(g/t/min)を、また、RはMgの添加速度V(g/t/min)とキャリアガスの流量Q(Nl/min)との比(g/t/Nl)を表す。前記の方法は、タンディッシュ内の溶鋼に適用することが好ましい。 (もっと読む)


【課題】炭素含有量の少ない含クロム溶鋼を高効率で製造可能な含クロム溶鋼の製造方法を提供する。
【解決手段】精錬炉の内部に収容した含クロム溶鋼中に酸素ガスおよび非酸化性ガスを含む混合ガスを吹き込んで脱炭する大気精錬後に、該精錬炉内を減圧して含クロム溶鋼中に酸素ガスを含む攪拌ガスを吹き込んで脱炭および溶鋼の昇熱を行なうと共に脱炭後に還元剤を投入する減圧精錬を行なう。この場合に、減圧精錬では、前記精錬炉内を2,500〜7,000Paまで減圧し、溶鋼の昇熱に必要な酸素ガス量を、精錬炉内の含クロム溶鋼1,000kg当り28〜43m3/h(0℃、1気圧換算)で溶鋼中へ吹き込む。 (もっと読む)


【課題】 作業性に優れるとともに有価金属の損失を抑えることができ、また簡単に加工性を向上できるステンレス鋼の溶製方法を提供する。
【解決手段】 電気炉で原料を溶解してステンレス溶銑を生成し(a1)、ステンレス溶銑を転炉へ出鋼後造滓材を投入して粗精錬および成分調整する(a2〜a5)。転炉で生成されるスラグとステンレス溶鋼とを取鍋へ出鋼し、VODでスラグが存する状態のまま減圧下でステンレス溶鋼に酸素ガスを吹き込んで脱炭精錬する(a6,a7)。脱炭後、スラグ層の上からFeSiを投入してスラグ中のCrを還元回収するとともにステンレス溶鋼を脱酸する(a8)。脱酸後、大気圧下でAlワイヤをステンレス溶鋼中へ装入し、ステンレス鋼中の非金属介在物をC系介在物のみにする(a9,a10)。 (もっと読む)


【課題】疲労特性に優れた鋼線材を製造する製造方法を提供する。
【解決手段】前記鋼線材の元となる溶鋼4の精錬処理を行うにあたり、該精錬処理は取鍋ガス攪拌精錬、減圧槽内取鍋ガス攪拌精錬、取鍋内電磁誘導攪拌精錬、還流式脱ガス精錬のいずれか1つ又は2つ以上を組み合わせたものとし、該精錬処理で使用するスラグ13の組成を、CaO/SiO2=0.5〜1.5,Al2O3=3〜25質量%,MgO=3〜25質量%とし、さらに、前記各攪拌精錬における「攪拌動力密度×精錬時間」の総和が800〜1500の範囲内になるようにする。 (もっと読む)


【課題】 RH真空脱ガス装置において溶鋼を精錬する際に、溶鋼温度調整用の冷材の使用量を規定しなくても且つ最小限の脱ガス処理時間の延長によって、冷材添加によって発生した介在物を分離させ、介在物の極めて少ない高清浄度鋼を安定して溶製する。
【解決手段】 RH真空脱ガス装置で処理中の溶鋼に温度調整用の冷材を添加して溶鋼温度を調整するに際し、冷材を溶鋼に添加した後、更に、下記の(1)式及び(2)式によって算出される必要延長時間のうちでどちらか長い方の必要延長時間以上にわたって溶鋼を環流する。但し、(1)式及び(2)式において、tは必要延長時間、kは脱酸速度定数、Wc は冷材の添加量、Wm は溶鋼量、Oc は冷材の酸素濃度、Om は冷材添加時の溶鋼中酸素濃度、Qは溶鋼環流量である。
t=0.9×Wc×(Oc-Om)/(k×Wm×Om ) …(1)
t=Wm/Q …(2) (もっと読む)


【課題】効率良くZr入りCr含有鋼を連続鋳造できるようにする。
【解決手段】Zrを0.1〜1.5質量%含み、かつCrを8質量%以上含むZr入りCr含有溶鋼の製造方法である。精錬炉における酸化クロムの還元工程で、還元処理後の溶鋼成分を[Al]≧0.15質量%、あるいは[Si]≧0.8質量%以上となるように調整した後、該溶鋼を取鍋へ出湯する。その後、該取鍋内溶鋼に対して耐火物製の浸漬ランスを用いてガスバブリングを行いながらCaSiを添加した後にFeZrを投入する。
【効果】連続鋳造時、ノズル詰りによって鋳込みを中止することがなく、また溶鋼の清浄性を悪化させることもないZr入りCr含有溶鋼を、優れた生産性で安価に製造できる。 (もっと読む)


【課題】 溶鋼に残存する有害な非金属介在物が非常に少ない清浄度の高い鋼を必要十分な工程で精度良く製造する方法を提供する。
【解決手段】 精錬終了時に製品で保証したい介在物径に応じてキリング時間を設定し、介在物センサーを用い精錬最終工程の溶鋼中の介在物の粒径最大値を得た後、その粒径最大値が保証したい介在物径以上だった場合に、キリングすることで高清浄度鋼を得る方法において、製品で保証したい介在物の最大径に応じて、取鍋精錬におけるキリング時間を数式(1)内のt秒±10%に確保する高清浄度鋼の製造方法。
t=1.8×106・h/D2 (1)
ただし、t:キリング時間(秒)
h:取鍋内溶鋼深さ(m)
D:製品で保証したい介在物最大径(μm) (もっと読む)


【課題】容器壁内部の温度計算を行わなくとも、容器内に高温物質が存在する状態で、容器壁の厚みを直接的にかつ精度よく推定できる容器壁の厚み推定方法を提供する。
【解決手段】容器の外壁面の温度計測点にて計測された温度h(ti)が入力されるとともに、温度h(ti)を基に熱流束を熱伝導率で除した物理量g(ti)を算出する(S103)。そして、残存厚みの仮定値l〜を設定し、変数v(l〜,ti)を求める(S104)。次に、式(10)のMA×VB=Vbを解くことにより、B0(l〜)、B1(l〜)、・・・、BN(l〜)を求め(S105)、式(11)のp(l〜,t)を算出する(S106)。設定値ε以下となるp(l〜,t)が得られるまで演算処理を繰り返し(S107)、設定値ε以下となったときの仮定値l〜を容器壁の残存厚みlとして決定する(S108)。 (もっと読む)


1 - 20 / 34