説明

Fターム[4K013FA05]の内容

溶融状態での鋼の処理 (7,585) | 制御、測定又は数値限定 (648) | 対象がスラグの成分組成であるもの (181)

Fターム[4K013FA05]の下位に属するFターム

Fターム[4K013FA05]に分類される特許

1 - 20 / 122


【課題】転動疲労寿命に優れ、圧延ままで冷間鍛造が可能な軸受用棒鋼の提供。
【解決手段】特定量のC、Si、Mn、P、S、Cr、Al、CaとOを含有し、残部はFe及び不純物からなる化学成分を有し、超音波疲労試験の破壊起点介在物を極値統計処理して求めた評価予測体積144mm3中の予測最大介在物幅≦20μm、予測最大介在物長さ≦800μmであり、破壊起点介在物が酸化物の場合には、平均組成がCaO:2.0〜20%、MgO:0〜20%及びSiO2:0〜10%で、かつ残部がAl2O3であって、特定の2元系、3元系及び4元系の酸化物のうちの何れかからなり、かつ、破壊起点介在物が硫化物の場合には、平均組成がCaS:100%のCaSの1元系硫化物、又はCaS:1.0%以上、MgS:0〜20%で、かつ残部がMnSであって、特定の2元系又は3元系の硫化物からなり、棒鋼の表面からR/2部位置までの最大硬さがビッカース硬さで290以下である軸受用棒鋼。 (もっと読む)


【課題】 取鍋内スラグを十分に固化させて取鍋からタンディッシュへの流出を防止するとともに、取鍋内スラグの近傍に存在する溶鋼の清浄性を従来に比較して更に向上させ、高速鋳造下であっても介在物の少ない清浄性に優れた鋳片を製造する。
【解決手段】 転炉から取鍋へ未脱酸状態のまま出鋼し、出鋼後、取鍋内のスラグに金属AlまたはAlドロスを添加してスラグ中の低級酸化物を還元するとともに、スラグのMgO濃度が6〜15質量%となるように、MgCO3含有物質をスラグに添加し、次いで、真空脱ガス装置において、溶鋼中炭素と溶存酸素とを反応させて溶存酸素濃度を0.050質量%以下まで低減し、溶存酸素濃度が0.050質量%以下となった後に金属Alで溶鋼を脱酸し、Mnは脱酸剤として使用せず、溶鋼のMn成分の調整が必要なときには、前記のAl脱酸後にMn含有金属を添加してMn調整を行い、その後、溶鋼を連続鋳造機でスラブ鋳片に鋳造する。 (もっと読む)


【課題】ボロン含有ステンレス鋼の製造に当たり、ボロンを鋼中に効率よく歩留らせることのできるボロン含有ステンレス鋼の製造方法を提案する。
【解決手段】鉄、クロムおよびニッケル含有原料を電気炉で溶解し、得られた溶鋼をAODおよび/またはVODにて脱炭精錬し、次いで、Al、またはAlとフェロシリコン合金を用いて脱酸することでCrの還元を行ない、その後、生石灰や蛍石を添加すると共にAlを添加してAlの含有量が0.005〜0.2mass%となるようにし、その後、0.05〜2.50mass%のボロン源を添加して、ボロン含有ステンレス鋼を製造する。 (もっと読む)


【課題】難脱硫鋼の脱硫技術に関し、溶鋼やステンレス鋼などの溶融鉄合金をCaO−SiO系スラグを用いてスラグ−メタル間反応により溶融金属中の硫黄濃度を低減する脱硫処理において脱硫率を向上させる脱硫方法を提供する。
【解決手段】溶融金属表面に、CaO、SiO、Alを合計で80%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグを形成させ、溶鋼とスラグとを攪拌し脱硫処理を行う。この際に、スラグ中のCaO,SiO、Alの各濃度が(1)式:(%CaO)/(%Al)≧2.3と,(2)式:0.4≦(%CaO)/(%SiO)≦3.5とを同時に満足するように調整し、かつ溶鋼中のSi濃度[Si]≧0.1質量%、もしくはAl濃度[sol.Al]≧0.005質量%に調整した後、スラグ中BaO濃度が(3)式:4≦(%BaO)≦20を満足するようにスラグにBaOを添加する。 (もっと読む)


【課題】鋳型内で溶鋼との反応を抑制し、安定した操業が可能であり、かつ、鋳片の表面品質を良好に保つために、モールドフラックスを用いて、C含有量が0.1〜1.1%であるとともにMn含有量が10〜30%である高Mn鋼を連続鋳造する。
【解決手段】Mn含有量が10〜30%である高Mn鋼の連続鋳造用モールドフラックスである。高Mn鋼のMn含有量(Mn)に対する連続鋳造用モールドフラックスのMnO含有量(MnO)の比{(MnO)/(Mn)}は、0.25〜1.2であるとともに、塩基度(T.CaO/SiO)が0.80〜1.6である。 (もっと読む)


【課題】 ストラス寿命試験の10%破断寿命(B10寿命)が5×107回以上となる高疲労寿命の高疲労強度鋼鋳片の製造方法を提供する。
【解決手段】 高炉で溶製された溶銑を転炉で脱炭精錬して溶鋼を溶製し、該溶鋼を転炉から取鍋に出鋼し、その後、取鍋内の溶鋼に加熱攪拌処理を施した後に真空脱ガス処理を施し、次いで、得られた溶鋼を連続鋳造機で連続鋳造して高疲労強度鋼の鋳片を製造するにあたり、前記出鋼後に取鍋内の転炉スラグを取鍋から除滓し、該転炉スラグの除滓後、取鍋内に媒溶剤を添加して、該媒溶剤の添加によって生成される取鍋内スラグの組成を、比[質量%CaO/質量%SiO2]が6.0〜12.0、比[質量%CaO/質量%Al23]が1.5〜3.0、MgO含有量が4.0質量%以下、TiO2含有量が1質量%以下で、且つ、取鍋内スラグの1600℃での粘度を1.3〜2.0poiseに調整し、前記加熱攪拌処理を実施する。 (もっと読む)


【課題】耐衝撃性及び表面性状に優れ、かつニッケル製錬プラント及び海洋構造物等への使用に耐えるFe−Ni−Cr−Mo合金を提供する。
【解決手段】質量%で、C:0.001〜0.015%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.020%以下、S:0.0015%以下、Ni:30.00〜32.00%、Cr:26.00%を超え28.00%以下、Mo:6.00〜7.00%、Cu:1.00%を超え1.40%以下、Al:0.001〜0.10%、N:0.15〜0.25%、B:0.0005〜0.0030%、Ca:0.0001〜0.0020%、Mg:0.0001〜0.0050%、O:0.0001〜0.0050%、残部:Feおよび不可避不純物からなる。 (もっと読む)


【課題】転動疲労寿命B10が2×107回を超え、かつ、軟質化するための球状化焼鈍処理を施すことなく、硬さHVが330未満である機械構造用鋼を提供する。
【解決手段】 本発明の機械構造用鋼は、質量比で、C:0.40〜0.70%、Si:0.80%以下、Mn:0.70〜1.5%、P:0.020%以下、S:0.030%以下、Al:0.050%以下、Cr:0.20%以下、Mo:0.05〜0.5%、O:0.0015%以下、Ti:0.0050%以下(ただし、0を除く)およびN:0.0015〜0.010%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する機械構造用鋼において、鋼中のTi含有量とN含有量が、特定の関係を満足し、転動疲労寿命(B10)が2×107回超えでかつ硬さ(HV)が330未満である。 (もっと読む)


【課題】 転炉出鋼後の低硫鋼の硫黄含有量が目標硫黄濃度の上限を外れた場合などに、RH真空脱ガス装置において、製造コストの上昇を抑え且つ安定して溶鋼中の硫黄濃度を目標上限値以下に低減する。
【解決手段】 RH真空脱ガス装置1の真空槽5の頂部に設けた上吹きランス13から真空槽内の溶鋼湯面に向けて、CaO及びAl23を主成分とするプリメルトフラックスを脱硫用フラックスとして搬送用ガスとともに吹き付けて溶鋼3を脱硫する、溶鋼の脱硫方法において、前記脱硫用フラックスの吹き付け前に、CaO及びMgOを主成分とするフラックス、または、CaOを主成分とするフラックスとMgOを主成分とするフラックスとを、CaO純分及びMgO純分の添加量をともに溶鋼トンあたり0.5kg以上2.5kg以下の範囲内として、真空槽内の溶鋼に添加する。 (もっと読む)


【課題】真空脱ガス装置の耐火物の溶損を抑制する。
【解決手段】真空脱ガス装置の脱ガス槽の内部に配置される吹錬上吹きランスの先端に装着されるノズルを介して酸素ガスを溶鋼に吹き付けて酸素吹錬する際に、第1の開口部2aおよび第2の開口部2bを有する管状の本体2と、本体2の内部で第1の開口部2aと第2の開口部2bとの間に本体2の内壁2cから離間して配置される流動制御体3とを備えるノズル1を用いて真空脱ガス装置の耐火物の溶損を抑制する。本体2は、第1の開口部2aと第2の開口部2bとの間の内壁2cに環状に形成される突出部4を有する。流動制御体3は、第1の尖端部3a及び第2の尖端部3bとを有するとともに、その一部が軸方向に関して突出部4の形成位置に存在するように、配置される。流動制御体3の最大径を有する部分は、突出部5が形成される位置よりも第1の開口部2aの側に、配置される。さらに、突出部4は、第2の開口部2bに一致する位置に形成される。 (もっと読む)


【課題】Alキルド鋼溶製用の高Al2O3含有耐火物からなる取鍋を用いても、高い生産性で低Al鋼を溶製可能な方法を提供する。
【解決手段】質量%で、C:0.03-1.2%、Si:0.03-0.8%、Mn:0.1-2.5%、P:0.01%以下、S:0.150%以下、sol.Al:0.005%以下、Ti:0.1%以下、Ca:0.0020%以下、O:0.0050%以下およびN:0.001-0.03%を含有し、残部がFeおよび不純物からなる低Al鋼の溶製方法であって、取鍋がAl2O3を55質量%以上含有する耐火物からなり、前記取鍋の鋼浴部の面積A[m2]と前記取鍋に収容される溶鋼の体積V[m3]の比A/Vが2.5[m2/m3]以下を満足し、溶鋼の攪拌時の攪拌エネルギーKが0.3[MJ/t]以下を満足、または、溶鋼のガス攪拌および溶鋼の環流操作に伴う攪拌動力密度εLが130[W/t]以下を満足する。 (もっと読む)


【課題】転動疲労寿命の長い軸受材料を提供すると共に、該軸受材料の製造方法を提供することを目的とする。
【解決手段】被検面積が3000mmである場合に、(長さ×幅)1/2で算出される介在物平均径が3μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり100個以下、前記介在物平均径が10μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり2個以下で、且つ、前記介在物平均径が3μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の全体の90%以上が、酸化マグネシウム濃度が5質量%以下である軸受材料は、転動疲労寿命が優れている。 (もっと読む)


【課題】製鋼スラグ中のダイカルシウムシリケートの炭酸化を促進し、また、炭酸化未反応の遊離CaOやCa(OH)2の残存を抑制することができ、これによって炭酸化処理後の製鋼スラグが水分と接触したときに発生するスラグ溶出水のpHを短期に亘ってだけではなく、長期に亘っても可及的に低減することができる製鋼スラグの処理方法を提供する。
【解決手段】製鋼スラグにSi含有物質と水を配合して混練し、得られた混練物を水熱養生処理し、次いで得られた養生物を炭酸化処理する製鋼スラグの処理方法である。 (もっと読む)


【課題】製銑処理に優れた溶銑スラグと溶鋼処理に優れた取鍋精錬スラグとの2つのスラグを混合することによって、特に路盤材用に使用されるフッ素の溶出が少ないリサイクルスラグを製造することができるようにする。
【解決手段】リサイクルスラグの製造を行うに際し、塩基度が低い溶銑スラグS1を排滓容器1に投入して当該溶銑スラグS1によって排滓容器1をコーティングし、取鍋精錬にて生成した取鍋精錬スラグS2を、溶銑スラグS1によってコーティングされた排滓容器1に溶融状態で混合し、混合した混合スラグの化学成分が、CaO:34〜52質量%、Al23:16〜25質量%、SiO2:18〜26質量%、MgO:6〜10質量%であって残部が不可避不純物となるようにし、さらに、混合スラグを冷却後に水和処理を行う。 (もっと読む)


【課題】 極低硫鋼を製造することを目的として転炉から出鋼された溶鋼に対して、CaO含有物質を脱硫剤の主たる構成物質として用いて取鍋内で取鍋精錬法による脱硫処理を施すにあたり、CaF2を脱硫剤の一部として使用しなくても、また、脱硫剤がプリメルトフラックスでなくても、添加した脱硫剤を迅速に滓化させ、効率良く脱硫する。
【解決手段】 脱硫処理及び脱燐処理の施された溶銑の転炉での脱炭精錬によって得られ、転炉から取鍋2に出鋼された溶鋼9を、当該溶鋼への攪拌用ガスの吹き込みにより攪拌しながら、取鍋内に添加されたCaO含有物質を脱硫剤として用いて取鍋内で脱硫処理する溶鋼の脱硫処理方法であって、脱硫処理後の取鍋内スラグ10の組成を、SiO2の含有量が5〜15質量%、[(質量%CaO)+(質量%MgO)]/(質量%Al23)が1.5〜3.0で、且つCaF2を実質的に含有しない組成に調整する。 (もっと読む)


【課題】 取鍋精錬における耐火物の溶損を減少し、取鍋精錬後のスラグを路盤材にする場合に土壌環境基準を満たすスラグとするため、溶鋼の取鍋精錬を新規の造滓剤を用いて低コストで脱硫する方法を提供する。
【解決手段】 還元スラグである取鍋精錬スラグの組成が、基本組成としてCaO−Al23−SiO2−MgOからなり、従来のホタル石のCaF2に代わる添加材として、上記の基本組成にアルカリ酸化物であるNa2O、K2O、Li2Oを0.5〜10mol%添加したスラグからなるものとして、溶鋼を取鍋精錬により脱硫する鋼の脱硫方法で、添加材としてアルカリ酸化物を添加するものでは、固相率が3〜4%低下し、流動性が確保され、脱硫は図1に示すフラックスA<CaF2<Li2O<Na2O<K2Oの順で大となる。 (もっと読む)


【課題】製鋼スラグを有効利用できる処理方法を提供する。
【解決手段】製鋼スラグを有機酸溶液中で攪拌後、固液分離して、Fe2O3含有量が40質量%以上である高鉄含有物を回収する製鋼スラグの処理方法。
有機酸溶液としては、サリチル酸メタノール溶液を使用することが好ましい。
高鉄含有物は、製鋼原料、セメントクリンカー用原料及び/又はコンクリート用混和材として使用することができる。 (もっと読む)


【課題】
HDD部材や、薄膜シリコン型太陽電池基板をはじめとする半導体層形成基板などの、精緻な表面が要求される部材に適したステンレス鋼板であって、無電解Niめっき等の表面処理を施さなくても、ステンレス鋼板の裸の表面のままで、クリーン環境下で行われる洗浄工程で優れた洗浄性を呈する表面キズが少ないステンレス鋼板を大量生産に適した手法にて提供する。
【解決手段】
C:0.15重畳%以下、Si:0.1〜2.0質量%、Mn:0.1〜付質量%、S:0.007質量%以下、Ni:2〜15質量%、Cr:15〜19質量%、N:0.2質量%以下、Al:0.01質量%以下、残部がFe及び不可避的不純物からなり、Si/Alの質量比が100以上になる組成を有するとともに、分放している非金属介在物が、MgO:7質量%以下、AlO:35質量%以下、Cr:10質量%以下を含み、残部がMn(O,S)とSiOから構成されたステンレス鋼から製造される鋼板であり、鋼板表面において、深さ0.5μm以上且つ開口面積10μm以上であるマイクロピットの存在密度が0.01m当たり10.0個以下であり、且つ前記ピットの開口部面積率が1.0%以下で分布していることを特徴とする、洗浄性に優れたオーステナイト系ステンレス鋼。 (もっと読む)


【課題】 S濃度が0.0020質量%以下、Ti濃度が0.0020質量%以下、Al濃度が0.0220〜0.0270質量%の範囲である高Si鋼の溶製方法を提供する。
【解決手段】 Si:3.0〜3.5質量%、S:0.0020質量%以下、Ti:0.0020質量%以下、Al:0.0220〜0.0270質量%である高Si鋼の溶製方法であって、転炉で脱炭精錬された後の溶鋼の転炉から取鍋への出鋼時に、取鍋内の溶鋼にSi源を添加するとともにCaO源及びAl23源を添加し、その後の真空脱ガス設備での二次精錬後の取鍋内スラグの組成が、(1)式、(2)式及び(3)式を満足する範囲内になるように制御する。
1.0 ≦(スラグ塩基度)≦2.0 …(1) (質量%TiO2)≦0.2/(スラグ塩基度) …(2) 65×(スラグ塩基度)-2.9≦(質量%Al2O3)≦180×(スラグ塩基度)-3.4 …(3) (もっと読む)


【課題】電気炉およびそれに準じる製鋼炉を用いて精錬するに際して、フッ素を含む媒溶剤の添加を実質的に行うことなく脱りん処理および溶鋼内の有価金属成分の安定制御が可能な精錬方法を提供する。
【解決手段】精錬終了時にCr:0.1質量%以上3.0質量%以下、P:0.002質量%以上0.20質量%以下を含有する溶鋼を対象として、T.Fe:4質量%以上30質量%以下、NaO:4質量%以上20質量%以下であるとともに、(%CaO)、(%Al)および(%Cr)の比が、1.0≦(%CaO)/{(%Al)+(%Cr)}≦3.0を満足する組成を有するスラグを生成する。 (もっと読む)


1 - 20 / 122