説明

Fターム[4K017BB11]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の副成分 (3,507) | アルカリ土類 (57)

Fターム[4K017BB11]に分類される特許

1 - 20 / 57


【課題】液相反応技術を利用して製造されたニッケルナノ粒子の耐焼結性を向上させる方法を提供する。
【解決手段】沸点が200℃以上の有機溶媒中で、金属アルコキシドの存在下、表面に水酸基を有する平均粒子径20〜100nmの範囲内のニッケルナノ粒子10にマイクロ波を照射して150℃以上に加熱することにより、表面に金属含有皮膜101が形成された複合ニッケルナノ粒子100を製造する。複合ニッケルナノ粒子100の金属含有皮膜101は、表面活性を低下させ、焼結時の急激な表面酸化を抑え、低温収縮性を抑制できる。マイクロ波照射により、ニッケルナノ粒子を構成する結晶子10aを大きく成長させることも可能となる。 (もっと読む)


【課題】水素の吸蔵・放出特性を改善した水素吸蔵合金を提供する。
【解決手段】下記一般式(16)で表され、かつCuKα線を用いたX線回折パターンにおける2θ=8〜13゜の範囲に現れる最強ピークの強度(I1)と、全ピークの最強線ピークの強度(I2)との強度比(I1/I2)が0.15未満である合金を含む水素吸蔵合金。
R41-a-bMgaM8b(Ni1-xM9xz …(16)
ただし、R4はイットリウムを含む希土類元素およびCaから選ばれる少なくとも1つの元素、M8はMgより電気陰性度の大きな元素(ただし、R4、Ni、M9を除く)、M9はCo,Mn,Fe,V,Cr,Nb,Al,Ga,Zn,Sn,Cu,Si,P,Bから選ばれる少なくとも1つの元素であり、a、b、x、zはそれぞれ0<a≦0.6、0≦b≦0.5,0≦x≦0.9,2.5≦z<4.5を示す。 (もっと読む)


【課題】従来の金属ナノ粒子合成手法における、水中の還元雰囲気下での合成では金属ナノ粉子が短時間で酸化され易く、表面を種々の方法で被覆しても、不安定で、水中では、特にその被覆物が離脱して、次第に表面から酸化されてしまうなどの問題を解決する。
【解決手段】高温高圧状態の、亜臨界ないし超臨界水中での水熱還元プロセスを適切な還元剤存在下に行い、生成ナノ粒子の表面が金属状である金属又は合金ナノ粒子を得る。これにより、触媒、記憶材料、発光材料、オプトエレクトロニクスなどの広範な分野での利用が期待されている、例えば、性状の優れたコバルトナノ粒子を、簡単な手法で、低コストに且つ安定的に製造できる。 (もっと読む)


【課題】還元剤に起因する不純物の含有率が低く、磁気的及び/又は電気特性を有する、窒化鉄を製造するのに適した鉄微粒子を得る。
【解決手段】鉄微粒子は、100nm以下の平均粒子径を有し、かつ平均粒子径に対するScherrerの式によって計算される結晶子径の比((結晶子径)/(平均粒子径)の比)が、0.3以上である。また、鉄微粒子を製造する方法は、(a)有機溶媒中に鉄錯体が分散している分散体を提供すること、及び(b)鉄錯体を熱分解して、鉄微粒子を生成することを含み、鉄錯体が、アミン配位子及びカルボニル配位子を有する鉄アンミンカルボニル錯体であり、かつ分散体が、分散剤及び電解質を含有する。 (もっと読む)


【課題】粒径が小さく、粒径分布が均一で、かつ、凝集の少ない金属ナノ粒子を、高価な装置や複雑な操作を必要とすることなく製造し得る方法を提供すること。
【解決手段】本発明の金属ナノ粒子の製造方法は流通方式によるものである。この製造方法は、金属源化合物と親水性有機溶媒と該金属源化合物に対して配位可能な有機化合物とを含む第1原料液と、親水性有機溶媒を含む第2原料液とを混合し、最終原料液を調製すること;および、最終原料液を加熱および加圧して親水性有機溶媒を超臨界状態として、ソルボサーマル法に供すること;を含む。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】Si、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた2種の元素である元素A‐1と元素A‐2と、Fe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Ba、ランタノイド元素(Ce、およびPmを除く)、Hf、Ta、W、Re、OsおよびIrからなる群より選ばれた少なくとも1種の元素である元素Dとを含み、前記元素A‐1の単体または固溶体である第1の相と、前記元素A‐2の単体または固溶体である第2の相と、前記元素A‐1と前記元素Dとの化合物である第3の相とを有することを特徴とするナノサイズ粒子と、前記ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】外枠型からの内枠型および金属圧粉体の取り出し時における、金属圧粉体の破損を簡易に防止することができる金属圧粉体の製造方法を提供すること。
【解決手段】外枠型2と、その外枠型2に嵌合される分割可能な内枠型3とを備える金型1を用意し、次いで、内枠型3の内枠内側面8に、窒化物の膜10を形成し、次いで、内枠型3内において、膜10に接するように、金属の粉末を充填し、金型1において、粉末を圧力成形して、金属圧粉体11を得て、その後、金型1から内枠型3および金属圧粉体11を取り出した後、内枠型3から、金属圧粉体11を取り出す。 (もっと読む)


【課題】漏れ電流の少ない電解コンデンサを製造でき、高容量化も可能なタンタル粉体、該タンタル粉体の製造に有用な製造方法および脱酸素方法を提供する。
【解決手段】マグネシウムと接触する処理を施されたタンタル粉体であって、特定の測定方法1により測定されるマグネシウム含量が20ppm以下であり、特定の測定方法2により測定されるマグネシウム含量が30ppm以下であるタンタル粉体。前記測定方法1により測定されるマグネシウム含量と前記測定方法2により測定されるマグネシウム含量との差が10ppm以下であることが好ましい。 (もっと読む)


【課題】磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とする工程と、この還元拡散反応生成物を窒化炉に装入し、窒化用ガスを流通しながら加熱し、窒化処理して希土類−遷移金属−窒素系磁石粉末を得る製造方法において、前記希土類−遷移金属合金粉末を窒化する際、窒化用ガスが、窒化炉1に設けられた2箇所以上の供給口10から流通され窒化を均一に行う。 (もっと読む)


【課題】積層セラミックコンデンサーの内部電極形成用として好適に用いることができる微細で均一な粒径のニッケル粉とその製造方法を提供する。
【解決手段】周期表第2族元素の含有量が0.002〜1質量%である水酸化ニッケル粉を焙焼して、酸化ニッケル粉とする工程(A)と、得られた酸化ニッケル粉(被還元物)を換算厚みで3mm以下に保持しながら、還元温度まで加熱し、水素含有ガスを0.01m/s以上の流速で供給して、酸化ニッケル粉を還元する工程(B)を含むことを特徴とするニッケル粉の製造方法;前記ニッケル粉の製造方法で得られ、平均粒径が0.2〜0.4μmであることを特徴とするニッケル粉などにより提供。 (もっと読む)


【課題】小さな平均粒径で分散が可能で、分散性、分散安定性、高濃度分散性等が良好な金属微粒子分散体の製造方法を提供すること、更には、こうして得られた金属微粒子分散体に対して溶媒置換を施す、分散性、分散安定性、高濃度分散性、分散媒多様性等が良好な金属微粒子分散液の製造方法を提供すること。
【解決手段】金属の気体9を低蒸気圧液体3に接触させることによって、該金属を該低蒸気圧液体3に分散させる金属微粒子分散体の製造方法であって、該低蒸気圧液体3中に、脂肪酸類、脂肪族アミン類又は脂肪酸エステル類を溶解させておくことを特徴とする金属微粒子分散体の製造方法、その金属微粒子分散体中の低蒸気圧液体を他の分散媒に置換したものであることを特徴とする金属微粒子分散液、及び、他の分散媒に置換する際に、1級アミン類又は2級アミン類を加えた後に他の分散媒を加える上記金属微粒子分散液の製造方法。 (もっと読む)


【課題】アルカリ蓄電池の出力特性と耐久性を同時に高めることができる水素吸蔵合金及び水素吸蔵合金電極を提供する。
【解決手段】アルカリ蓄電池用水素吸蔵合金であって、組成式がLaxReyMg1-x-yNin-m-vAlmv(ただし、ReはYを含む希土類元素(Laを除く)から選択される少なくとも1種の元素、TはCo,Mn,Zn,Fe,Pb,Cu,Sn,Si,Bから選択される少なくとも1種の元素、0.17≦x≦0.64、3.5≦n≦3.8、0.10≦m+v≦0.22、v≧0)と表され、主相がA519型構造であり、表面層のニッケル(Ni)に対するアルミニウム(Al)の濃度比率X(Al/Ni)(%)とバルク層のニッケル(Ni)に対するアルミニウム(Al)の濃度比率Y(Al/Ni)(%)の比X/Yが0.36以上、0.84以下である。 (もっと読む)


【課題】耐酸化性、耐発火性及び生産性を改善した脱硫剤及びその製造方法を提供する。
【解決手段】結晶粒界を有する多数のマグネシウム−アルミニウム合金結晶粒、及び前記マグネシウム−アルミニウム合金結晶粒の内部ではない外部として前記結晶粒界に存在する、マグネシウム及びアルミニウムのうち選択された少なくとも何れか一つとアルカリ金属及びアルカリ土類金属のうち選択された少なくとも何れか一つ間の化合物を含む脱硫剤の構造として、脱硫剤粒子を稠密に形成することでマグネシウムの酸化力を減らし、発火温度を高めて、大気中の酸素と反応せず溶銑内で硫黄と反応して、脱硫効率を高めることができる。 (もっと読む)


【課題】 分散安定性に優れしかも粒径制御が可能な新規な金属複合超微粒子を提供し、同時にそれを安価に大量生産できる製造方法を開発する。
【解決手段】 この目的を達成するために、本発明は、金属有機化合物から還元析出する金属原子が集合した金属核の周りを、界面活性剤殻と金属有機化合物起源の有機化合物殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
また、金属無機化合物から還元析出する金属原子が集合した金属核の周りを界面活性剤殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
その一つの製法は、金属有機化合物又は金属無機化合物を界面活性剤を用いて非水系溶媒中でコロイド化して超微粒子前駆体を形成する第1工程と、このコロイド溶液中に還元剤を添加することにより前記超微粒子前駆体を還元し、金属核の外周に少なくとも界面活性剤殻を有する金属複合超微粒子を形成する第2工程から構成される。 (もっと読む)


【課題】 ニッケル水素蓄電池の放電容量の増大を図るとともに、併せて該ニッケル水素蓄電池のサイクル寿命特性を改善することを目的とする。
【解決手段】 M1元素、カルシウム、マグネシウムおよびM2元素を主体として含む水素吸蔵合金と、水酸化アルミニウムとを含有して構成された負極を備え、M1元素は、希土類元素、4A族元素、5A族元素およびPdからなる群より選択される1種又は2種以上の元素(少なくとも希土類元素を含む)であり、M2元素は6A族元素、7A族元素、8族元素(Pdを除く)、1B族元素、2B族元素および3B族元素からなる群より選択される1種又は2種以上の元素(少なくともニッケルを含む)であり、水素吸蔵合金中のM2元素の含有割合が、M1元素、カルシウムおよびマグネシウムの各元素の含有割合の合計の3倍より大きく5倍未満であり、水素吸蔵合金中のカルシウムの含有割合が0.5原子%以上であり、かつ、水素吸蔵合金中のM2元素としてのアルミニウムの含有割合が0原子%以上1.5原子%以下である、ニッケル水素蓄電池による。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Mとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた少なくとも1種の元素であり、前記元素MがCu、AgおよびAuからなる群より選ばれた少なくとも1種の元素であり、前記元素Aの単体または固溶体である第1の相と、前記元素Aと前記元素Mとの化合物または前記元素Mの単体もしくは固溶体である第2の相を有し、前記第1の相と前記第2の相の両方が外表面に露出し、前記第1の相と前記第2の相が球形状であることを特徴とするナノサイズ粒子と、ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】Si、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた2種の元素である元素A‐1と元素A‐2とを含み、前記元素A‐1の単体または固溶体である第1の相3と、前記元素A‐2の単体または固溶体である第2の相5と、を有し、前記第1の相3と前記第2の相5との両方が外表面に露出し、前記第1の相と前記第2の相の外表面が球形状であることを特徴とするナノサイズ粒子1と、このナノサイズ粒子を用いたリチウムイオン二次電池用負極材料。 (もっと読む)


【課題】高容量と良好なサイクル特性を実現するリチウムイオン二次電池用の負極材料を提供する。
【解決手段】種類の異なる元素Aと元素Dとを含み、前記元素AがSi、Sn、Al、Pb、Sb、Bi、Ge、InおよびZnからなる群より選ばれた1種の元素であり、前記元素DがFe、Co、Ni、Ca、Sc、Ti、V、Cr、Mn、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Ba、ランタノイド元素(CeおよびPmを除く)、Hf、Ta、W、Re、OsおよびIrからなる群より選ばれた1種の元素であり、前記元素Aの単体または固溶体である、球形状の第1の相と、前記元素Aと前記元素Dとの化合物である第2の相を有し、前記第2の相の一部または全部が、前記第1の相に覆われていることを特徴とするナノサイズ粒子と、前記ナノサイズ粒子を負極活物質として含むリチウムイオン二次電池用負極材料である。 (もっと読む)


【課題】有機分散剤や有機潤滑剤による影響を受けることなく、高い磁気特性を有する希土類焼結磁石の製造方法を提供する。
【解決手段】本方法は原料の合金を粗粉砕した後にジェットミル法によって微粉砕することにより合金粉末を得る粉砕工程と、その合金粉末を磁界中で配向する配向工程と、配向工程後の合金粉末を焼結する焼結工程とを有し、微粉砕を水素ガス中、又は水素ガスと不活性ガスの混合ガス中で行うことを特徴とする。本方法では水素が分散剤となり、有機分散剤を用いずに効率よく微粉砕することができるため、有機分散剤に由来する炭素、酸素、窒素原子が合金粉末の微粉粒子内に侵入することがなく、磁気特性が向上する。また、粉砕工程と配向工程の間に合金粉末と液化不活性ガスを混合し、液化不活性ガスが完全に気化する前に配向工程を行うと、有機潤滑剤を用いずに配向性が高まるため、有機潤滑剤に由来する炭素等の影響がないうえ、脱有機潤滑剤工程が不要になる。 (もっと読む)


【課題】 保磁力、角形比に優れ、更に大気中350℃以上でも発火することなく磁気特性を保持することが可能な希土類−鉄−窒素系磁性粉末およびその製造方法を提供することを目的とする。
【解決手段】 一般式R100−x−y−zで表される磁性粉末であって、 前記M成分は、粉体内部の表面側に偏在していることを特徴とする(但し、RはYを含む希土類元素のうちの少なくとも一種、TはFeと遷移金属のうちの少なくとも一種、Mは300℃〜1200℃において標準ギブスエネルギーが−80kcal〜−300kcalの範囲である少なくとも一種の元素あるいはその酸化物であり、3<x<30、5<y<15、0.001<z<5である。)。 (もっと読む)


1 - 20 / 57