説明

Fターム[4K017DA05]の内容

金属質粉又はその懸濁液の製造 (21,321) | 目的物の性質、用途 (2,747) | 非晶質 (30)

Fターム[4K017DA05]に分類される特許

1 - 20 / 30


【課題】本発明は、外部電極用導電性ペースト、これを用いた積層セラミック電子部品及びその製造方法に関する。
【解決手段】本発明は、導電性金属粉末と、a+b+c=100、20≦a≦60、20≦b≦60及び2≦c≦25を満足する式a(Cu、Ni)−bZr−c(Al、Sn)を含む伝導性非晶質金属粉末と、を含む外部電極用導電性ペースト、これを用いた積層セラミック電子部品及びその製造方法を提供する。本発明によると、内部電極と外部電極との連結性低下及びガラスの励起によるメッキ不良を解決することができる。 (もっと読む)


【課題】良好な磁気特性を有する圧粉磁心を提供すること。
【解決手段】圧粉磁心の材料粉を非晶質性合金粉末ではなく、Fe基ナノ結晶合金粉末とする。即ち、ナノ結晶相の析出に係る熱処理(P2)と圧粉磁心の硬化(P3)とを分け、圧粉磁心の硬化前に、ナノ結晶化を図っておくこととする。更に、ナノ結晶相の析出に係る熱処理を行う際に、第2結晶化開始温度に至る前に昇温速度を下げることとする。これにより、高磁化のbccFeからなる30nm以下の微細なナノ結晶が析出したナノ結晶合金粉末を用いて優れた軟磁気特性と高飽和磁束密度とを有する圧粉磁心を得ることができる。 (もっと読む)


【課題】球状粒子棒状結合体及びその集合体からなり、高周波域で使用可能な磁性シートに適する非晶質軟磁性合金粉末を提供すること。
【解決手段】磁場印加を伴う液相還元法により、平均一次粒子径:0.2μm以上1.0μm以下の一次粒子が棒状に結合して形成された、短軸径:0.05μm以上2.0μm以下、長軸径:0.3μm以上15.0μm以下の球状粒子棒状結合体及びその集合体からなる非晶質軟磁性合金粉末を得ることができる。また、得られた粉末をシート形状に加工することで、高透磁率を得られ、且つ、高周波域でのノイズ抑制用途に適した磁性シートを得ることができる。 (もっと読む)


【課題】粒径の更に小さい高飽和磁束密度の非晶質軟磁性合金粉末を提供すること。
【解決手段】液相還元法により、例えば、下記組成を有する合金粉末を製造する:Fe100−a−b−x(NはCu,Ag,Au,Pt,Pdから選ばれる1種以上の元素であり、a,b,xは20原子%≦a≦35原子%、1原子%≦b≦3原子%、0原子%<x≦15原子%を満たす。)。これにより得られた軟磁性合金粉末は、平均粒径が0.05μm以上1.0μm以下であり、且つ、非晶質単相からなる。 (もっと読む)


【課題】 ニッケル水素蓄電池の放電容量の増大を図るとともに、併せて該ニッケル水素蓄電池のサイクル寿命特性を改善することを目的とする。
【解決手段】 M1元素、カルシウム、マグネシウムおよびM2元素を主体として含む水素吸蔵合金と、水酸化アルミニウムとを含有して構成された負極を備え、M1元素は、希土類元素、4A族元素、5A族元素およびPdからなる群より選択される1種又は2種以上の元素(少なくとも希土類元素を含む)であり、M2元素は6A族元素、7A族元素、8族元素(Pdを除く)、1B族元素、2B族元素および3B族元素からなる群より選択される1種又は2種以上の元素(少なくともニッケルを含む)であり、水素吸蔵合金中のM2元素の含有割合が、M1元素、カルシウムおよびマグネシウムの各元素の含有割合の合計の3倍より大きく5倍未満であり、水素吸蔵合金中のカルシウムの含有割合が0.5原子%以上であり、かつ、水素吸蔵合金中のM2元素としてのアルミニウムの含有割合が0原子%以上1.5原子%以下である、ニッケル水素蓄電池による。 (もっと読む)


【解決手段】R1214B型化合物を主相とするR1−T−B系焼結体に、R2(Sc及びYを含む希土類元素から選ばれる1種又は2種以上の元素)と、M(B、C、P、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pt、Au、Pb、Biから選ばれる1種又は2種以上の元素)とを含有する溶湯を急冷して得た急冷合金粉末を接触させ、真空又は不活性ガス雰囲気中で焼結体の焼結温度以下の温度に加熱することによりR2元素を焼結体の内部に拡散させる。
【効果】R2とMを含有する急冷合金粉末を焼結体上に塗布、拡散処理することにより、粉末の酸化が抑制されて取り扱い上の危険性が低減し、生産性に優れると共に、高価なTbやDy使用量が少なく、残留磁束密度の低減を抑制しながら保磁力を増大させた高性能のR−T−B系焼結磁石を提供することができる。 (もっと読む)


粉末ミリング技術、それによって形成されるスズ系合金、及びそのような合金のリチウムイオン電池の電極組成物としての使用法を提供する。合金は、スズと、少なくとも1つの遷移金属と、を含むが、シリコンは含有しない。粉末ミリングは、低エネルギーローラーミリング(ペブルミリング)を使用して行われる。 (もっと読む)


【課題】単一組成から成り、中心部から周縁部にかけて変化するように保磁力および磁化が分布する永久磁石およびその製造方法を提供する。
【解決手段】焼結によって多数のナノサイズの結晶粒が一体化されて成り、
体積全体に亘って化学組成が実質的に均一であり、
体積の周縁部から中心部にかけて高くなるように配向度が分布していることを特徴とする永久磁石。この永久磁石を製造する方法は、
磁石材料を溶融し急冷することにより結晶粒がナノサイズの多数の凝固リボンを形成する工程、
上記多数の凝固リボンを加圧成形して焼結することにより一体化し焼結体とする工程、
上記焼結体に、その体積の周縁部から中心部にかけて高くなるように歪が分布する塑性加工を施す工程
を含む。 (もっと読む)


【課題】 従来技術による金属粉末より粒径が小さく、且つ高い飽和磁束密度を併せ持つ非晶質軟磁性合金粉末を提供する。
【解決手段】 鉄塩、錯化剤、分散剤、pH調整剤、P系還元剤を含む原料液に対して、B系還元剤を含む還元液を滴下する液相還元法を採用することで、従来技術による金属粉末よりも粒径が小さく、高い飽和磁束密度を有する非晶質軟磁性合金粉末を得ることができる。また、得られた非晶質軟磁性合金粉末を結合材と混合し、圧縮成形することで、従来技術によるインダクタ用圧粉磁心より高い周波数域において低損失なインダクタ用圧粉磁心が得られる。 (もっと読む)


ナノ構造体の合金粒子を製造する方法は、粉砕媒体を含有するペブルミルでミルベースを粉砕することを含む。ミルベースは、(i)シリコンと、(ii)少なくとも1つの炭素又は遷移金属とを含み、ナノ構造体の合金粒子は、サイズが50ナノメートルより大きい結晶ドメインが実質的に無い。ナノ構造体の合金粒子を含むリチウムイオン電池用の負極組成物を製造する方法が更に開示される。 (もっと読む)


【課題】延性などの多様な特性を実現し易い金属ガラス複合構造物と、金属ガラス複合構造物を大寸法に製造し易い製造方法とを提供する。
【解決手段】構成金属元素が異なる複数の金属ガラス相を含有した構造を有する金属ガラス複合構造物30であり、複数種類の金属ガラス粒子11、12が混合された金属ガラス粒子混合物10を作製し、放電プラズマ焼結法等により焼結させることで製造する。 (もっと読む)


【課題】炭化物を含有することによって磁石成分を減少させることなく結晶粒を微細化し、これにより飽和磁化を低下させずに保磁力を向上させることができる希土類永久磁石およびその製造方法を提供する。
【解決手段】R−Fe−B系合金(R:希土類元素)中に、平均粒径が5〜100nmのHfC粒子を0.2〜3.0atom%分散させた。製造方法は、平均粒径が5〜100nmのHfC粒子を0.2〜3.0atom%含有するR−Fe−B系合金溶湯を急冷することにより非晶質または平均結晶粒径が5μm以下の磁石材料を得る工程と、前記磁石材料を熱間で塑性加工することにより磁気異方性を付与する工程とする。 (もっと読む)


【課題】簡単な構造を有し、且つ金属粉末の良好な歩留りを得られる非晶質軟磁性金属粉末とその製造方法、及び非晶質軟磁性金属粉末を用いた成形体を提供すること。
【解決手段】回転するディスクの表面に冷媒を供給して該冷媒の液膜を形成し、溶融金属をガスアトマイズ法にて1次粉砕して中間粒子を得、該中間粒子を前記回転するディスク上の前記液膜により2次粉砕しつつ急冷することとした。また、回転するディスクの周速と、冷媒の供給量を調整した。更に、金属粉末の組成を限定した。 (もっと読む)


【課題】 低圧成形で作製可能で、従来よりも低損失なインダクタを提供する。
【解決手段】インダクタの製造に用いられる本発明の非晶質軟磁性粉末は、三次元形状がWadellの実用的球形度の平均値が0.90以上である。
これは、Wadellの実用的球形度が高い方が、インダクタ等の圧粉体に非晶質軟磁性粉末を用いた際に、粉末粒子間の接触数が抑えられ、加圧成形時により高充填が可能となり、圧粉密度および透磁率が高くなると考えられるためである。
また、粉末粒子間の接触数が抑えられることにより、インダクタ等を低圧成形で作製可能となるためである。
また、本実施形態に係る非晶質軟磁性粉末は水アトマイズ法により製造されるのが好ましい。理由は製造される非晶質軟磁性粉末を真球に形成し易いからである。 (もっと読む)


本発明は、溶銑を利用した非晶質合金の製造方法に関する。本発明は、溶銑を提供する段階、前記溶銑に合金材を投入する段階、及び前記溶銑を凝固させる段階を含む、非晶質合金の製造方法を提供する。

(もっと読む)


【課題】ナノワイアやナノチューブなどのナノサイズ構造体はナノスケールのデバイスを構築するのに不可欠のもので、理論的な研究から、アモルファス状態の金属のナノ構造体が求められている。
【解決手段】圧縮試験で生じる金属ガラスの破壊面を精査する中で、金属ガラスナノワイアや金属ガラスナノチューブなどの金属ガラスのナノサイズの構造体が形成されているのを発見した。ナノスケールの構造体でも、バルク金属ガラスではアモルファス状態の構造が保たれることを確認した。金属ガラスの優れた特性を生かした金属ガラスナノワイアや金属ガラスナノチューブなどを提供できて、電極材、モーター材料、ナノエレクトリニクス材料、ナノ医療デバイス、ナノセンサー、オプティカル材料などの様々な分野に応用可能となる。 (もっと読む)


【課題】 特に、機械的特性を改善して扁平化しやすくしたFe基非晶質合金、及びこのFe基非晶質合金を用いて所望のシート特性を得られるようにした磁気シートを提供することを目的としている。
【解決手段】 磁気シート4は扁平化されたFe基非晶質合金とマトリクス材料を含む。Fe基非晶質合金は、少なくともFe、M(Sn,In,Znの少なくともいずれか1種)、P及びCを有し、ビッカース硬さ(Hv)が885以下で、引張強度が200〜360(MPa)で、ヤング率が35〜60(MPa)、伸び(歪み)が0.3%以上である特性を備えている。 (もっと読む)


【課題】良好な耐食性と高い飽和磁束密度Bsとを有し、非晶質形成能に優れた安価な高耐食非晶質合金とそれを用いた粉末、薄帯及び圧粉磁芯、インダクタを提供すること。
【解決手段】Feを主成分元素とした高耐食非晶質合金であって、組成式Fe100−w−x−yAlで表され、組成式の構成元素のうち、Lは、V、Ti、Cr、Y、Zr、Mo、Nb、Ta、Wのうちから1つ以上選択される元素であり、2原子%≦w≦16原子%、2原子%≦x≦16原子%、0.3原子%≦y≦12原子%、0原子%<z≦4原子%である組成比率を満たすようにしたこと。 (もっと読む)


【課題】主に製品の母材と同じ組成を有するろう付け材を用いたろう付けにより物品を接合可能とする。
【解決手段】ろう付けによって物品を接合するための鉄を母材とするろう付け材は、鉄を別として、質量%で、0〜40%、好ましくは9〜30%のCr、0〜16%、好ましくは0〜8%、より好ましくは0〜5%のMn、0〜25%のNi、0〜1%のN、及び最大7%のMo6%未満のSi及び/または0〜2%、好ましくは0〜1.5%のB、及び/または0〜15%のPを含む合金であって、B、P、Siの組み合わせまたは個別の添加により、ろう付け材が完全に溶融される温度である液相線温度が低下される合金に相当する。ろう付け製品は、B及び/またはP及び/またはSiを液相線温度を低下させる成分として合金化した、鉄を母材とするろう付け材によって、鉄を母材とする物品をろう付けすることによって製造される。 (もっと読む)


【課題】目的に応じて単分散の金属コロイド溶液が作成出来、自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、また生産性も高く、得られる金属微粒子も再分散性の良い金属微粒子の製造方法を提供する。
【解決手段】近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる、薄膜流体中で均一に攪拌・混合する反応装置を用いて、高分子分散剤及び金属化合物を含む水溶液を上記の薄膜中で還元剤水溶液と合流させ、薄膜中で均一混合しながら還元反応を行うことにより金属微粒子を得る。 (もっと読む)


1 - 20 / 30