説明

Fターム[4K017EJ01]の内容

金属質粉又はその懸濁液の製造 (21,321) | 液体化合物還元 (1,153) | 無機化合物 (765)

Fターム[4K017EJ01]に分類される特許

161 - 180 / 765


【課題】強磁性を示すにもかかわらず、水などの極性の高い溶媒に対して高い分散性を有する溶媒分散性粒子、およびかかる粒子を極性溶媒に分散してなる分散液を提供すること。
【解決手段】図1(i)に示す溶媒分散性粒子1(本発明の溶媒分散性粒子)は、2種以上の金属成分を含み、原子配列が規則構造を有する組成の多成分合金粒子10と、この多成分合金粒子10の表面を被覆する表面修飾子mとを有するものである。表面修飾子mは、その1分子中に、多成分合金粒子10中の金属元素aと相互作用する官能基Xと、金属元素bと相互作用する官能基Yと、極性溶媒に親和性を有する官能基Zとを、それぞれ1つ以上有するものである。溶媒分散性粒子1は、多成分合金粒子10が強磁性を示すにもかかわらず、表面修飾子mが高密度に結合しているため、水などの極性溶媒に分散した場合にも粒子の凝集が確実に防止される。 (もっと読む)


【課題】導電性、電荷注入性に優れ、又、非極性溶媒への分散性に優れた銀−共役化合物複合体を提供する。
【解決手段】数平均のフェレー径が1000nm以下の銀粒子と、該銀粒子に吸着した重量平均分子量3.0×10以上の共役化合物とを含む銀−共役化合物複合体。 (もっと読む)


【課題】金ヒドロゾル(金コロイド)は赤〜紫色の色材として広く使用されている。同質の金ナノ微粒子による青色系着色料を提供すること。
【解決の手段】生物由来で安全かつ生分解性の三塩基酸型構造のバイオサーファクタント(生物の産生する界面活性剤)であるスピクリスポール酸およびそのラクトン環開環体の各種アルカリ塩を、一価の無機塩類の共存下で塩化金酸水溶液のAu3+の還元剤として用いる。還元反応後には未反応のバイオサーファクタントおよびその酸化物が生成した金ヒドロゾルや金ヒドロゲル中の金ナノ微粒子に吸着して金ナノ微粒子の水分散系を安定化させた青色系着色料。また、上記バイオサーファクタントにより塩化金酸を還元して得た赤色系金ヒドロゾルに対して一価の無機塩類を添加することにより、調製される金ナノ微粒子の水分散系からなる青色系着色料。 (もっと読む)


【課題】可能な限り単純な構成であっても接合強度が確保され、かつ接合強度のムラを低減させうる、接合用金属ペーストの提供を図ること。
【解決手段】マイクロトラック粒度分布測定装置で測定される、平均一次粒径(D50径)0.5〜3.0μmである金属サブミクロン粒子と、平均一次粒子径が1〜200nmであって炭素数6〜8の有機化合物で被覆された金属ナノ粒子と、これらを分散させる分散媒で構成した金属接合用ペースト(接合材)を用いて接合対象物である金属間にバルク状態の接合層を形成する。 (もっと読む)


【課題】所定の合金組成を有する合金微粒子を、ロスなく、効率よく製造することができる合金微粒子の製造方法と、当該製造方法によって製造される合金微粒子、および、導電性インク等として使用可能な金属コロイド溶液を提供する。
【解決手段】合金微粒子の製造方法は、2種以上の金属のイオンを、活性基としてカルボキシル基を有し、かつ、分子量が4000〜30000である高分子分散剤の存在下、液相の反応系中で、還元剤の作用によって還元して、上記2種以上の金属の合金からなる合金微粒子として析出させる。合金微粒子は、上記の製造方法によって製造され、一次粒子径が200nm以下である。金属コロイド溶液は、上記の合金微粒子を含有する。 (もっと読む)


【課題】粒子径が10nm以下のナノサイズでかつ、粒度分布幅の狭い銅微粒子の製造方法を提供する。
【解決手段】還元反応水溶液中の水酸化第二銅(Cu(OH))を有機分散剤(D)と還元剤である水素化ホウ素ナトリウム(NaBH)の存在下に撹拌しながら還元反応させる、銅微粒子の製造方法であって、還元反応中に該水溶液中には水酸化第二銅が溶解して生成する銅イオンと未溶解の水酸化第二銅が共存していて、還元反応の進行により該水溶液中の銅イオンが還元されて銅原子と銅微粒子が生成するのに伴い、前記未溶解の水酸化第二銅が該水溶液中に連続的に溶解して銅イオンを生成して、還元反応が該水溶液中で水酸化第二銅の飽和溶解度ないしそれ以下の濃度で行なわれることを特徴とする、銅微粒子の製造方法。 (もっと読む)


【課題】銀のエレクトロマイグレーション抑制及び銅の酸化防止のため、低温焼結可能な銀銅合金ナノ微粒子と良好な導電性を発現するその低温焼結薄膜を提供する。
【解決手段】銀のエレクトロマイグレーションを抑制するため、産業上の生産、使用実績の高い銅を用いて、数nmの銀銅合金シェル層と銀コア粒子からなる銀銅合金ナノ微粒子を作製した。銀銅は合金構造のため空気中でも銅が酸化されることなく、粉体でも溶剤中で分散状態でも安定に取り扱えることを明らかにした。その銀銅合金ナノ微粒子分散液を用いて、フレキシブルプラスチック基板上にスピンコートすると、銀銅合金ナノ微粒子が被着したスピンコート膜が作製できた。更には、この基板上の銀銅合金ナノ微粒子からなる被着物はアスコルビン酸水溶液に浸すと80℃の低温でも10分以内で焼結し、良好な導電性を示す焼結膜に変化した。 (もっと読む)


【課題】回収量が多く、経時による銀超微粒子の分散安定性に優れた銀超微粒子の製造方法、および分散安定性や基材との密着性に優れる銀超微粒子含有組成物、ならびに基材との密着性と導電性に優れた導電性部材を提供する。
【解決手段】水を主体に含有する水性媒体中に少なくとも水溶性銀塩、塩基性化合物、水溶性高分子化合物、および還元剤を含有せしめ、水溶性銀塩由来の銀イオンを還元し銀超微粒子を製造する銀超微粒子の製造方法において、該塩基性化合物が塩基性カリウム塩であることを特徴とする銀超微粒子の製造方法。およびこれにより得られた銀超微粒子を含有する銀超微粒子含有組成物、ならびに導電性部材。 (もっと読む)


交流(AC)電気分解方法で金属ナノ粒子を合成する時、還元剤と分散剤の濃度を、電流の強さに比例して一定に維持することで、合成される金属ナノ粒子の収率(yield)を大きく向上させることのできる交流電気分解法を用いた金属ナノ粒子の製造方法及びその装置が開示される。
前記金属ナノ粒子の製造方法は、反応容器内に、電解質及び分散剤を純水に溶解させて、電解溶液を準備する段階と、前記電解溶液内に、合成しようとする金属ナノ粒子と同じ材料からなる第1及び第2電極を距離を置いて反応容器に設置する段階と、前記第1電極と第2電極との間に交流電源を印加し、前記電解溶液内に第1及び第2電極の金属をイオン化させる段階と、時間当たり生成される金属イオンの濃度に対応して、金属イオンを還元させるための還元剤の濃度が一定であるように、還元剤を前記電解溶液内に投入することによって金属イオンを還元させて、金属ナノ粒子を合成する段階と、を含むことを特徴とする。 (もっと読む)


【課題】電子デバイスの導電性要素を作成するのに適した安定化金属ナノ粒子を調製するプロセスを提供する。
【解決手段】金属化合物、還元剤、及び安定剤を含む実施的に無溶媒の反応混合物中で、金属化合物を安定剤の存在下で還元剤と反応させて、無溶媒還元プロセスにより、表面上に安定剤の分子を有する複数の金属含有ナノ粒子を形成するステップを含む、安定化金属ナノ粒子を調製するプロセス。 (もっと読む)


【課題】強磁性金属ナノ構造体の生成方法、強磁性金属ナノファイバーおよびそれを用いたはんだ、ならびにシート材を製造する際に、簡便な操作で生成することができる強磁性金属ナノ構造体の生成方法およびそれにより得られる強磁性金属ナノ構造体の用途を提供する。
【解決手段】強磁性金属のイオンを還元させて強磁性金属を析出させる還元工程を行なう際に、強磁性金属のイオンに磁場を印加しながら前記強磁性金属のイオンを還元させる。 (もっと読む)


【課題】粒径の更に小さい高飽和磁束密度の非晶質軟磁性合金粉末を提供すること。
【解決手段】液相還元法により、例えば、下記組成を有する合金粉末を製造する:Fe100−a−b−x(NはCu,Ag,Au,Pt,Pdから選ばれる1種以上の元素であり、a,b,xは20原子%≦a≦35原子%、1原子%≦b≦3原子%、0原子%<x≦15原子%を満たす。)。これにより得られた軟磁性合金粉末は、平均粒径が0.05μm以上1.0μm以下であり、且つ、非晶質単相からなる。 (もっと読む)


【課題】所望の平均粒子径に制御された銅微粒子を簡便に製造することのできる、銅微粒子の製造方法を提供する。
【解決手段】銅微粒子の製造方法は、銅化合物が溶解あるいは分散している液中で、ゼラチンの存在下、前記銅化合物が持つ銅イオンを還元することにより、銅微粒子を得る方法において、前記ゼラチンの量を選択することによって前記銅微粒子の粒子径を制御する。粒子径の制御とともに粒子径分布の制御をも行うことが出来る。 (もっと読む)


本明細書では、ポリオール合成の反応条件を調節することによって、金属ナノワイヤの形態を制御する方法を記載する。特に、反応物を不活性気体でパージすることによって、バッチ間の一貫性を達成することができる。好ましい実施形態において、金属塩は銀塩であり、金属ナノワイヤは銀ナノワイヤである。他の実施形態において、特許請求される方法によって製造される複数の金属ナノ構造体は、少なくとも80%の金属ナノワイヤを含む。
(もっと読む)


【課題】所望の粒子径に制御された金属微粒子を簡便に製造することのできる、金属微粒子の製造方法を提供する。
【解決手段】金属化合物が溶解あるいは分散している液中で、ゼラチンの存在下、前記金属化合物が持つ金属イオンを還元することにより、金属微粒子を得る方法において、前記ゼラチンの種類を選択することによって前記金属微粒子の粒子径を制御することを特徴とする、金属微粒子の製造方法。粒子径の制御とともに粒子径分布の制御をも行うことが出来る。 (もっと読む)


【課題】 分散安定性に優れしかも粒径制御が可能な新規な金属複合超微粒子を提供し、同時にそれを安価に大量生産できる製造方法を開発する。
【解決手段】 この目的を達成するために、本発明は、金属有機化合物から還元析出する金属原子が集合した金属核の周りを、界面活性剤殻と金属有機化合物起源の有機化合物殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
また、金属無機化合物から還元析出する金属原子が集合した金属核の周りを界面活性剤殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
その一つの製法は、金属有機化合物又は金属無機化合物を界面活性剤を用いて非水系溶媒中でコロイド化して超微粒子前駆体を形成する第1工程と、このコロイド溶液中に還元剤を添加することにより前記超微粒子前駆体を還元し、金属核の外周に少なくとも界面活性剤殻を有する金属複合超微粒子を形成する第2工程から構成される。 (もっと読む)


【課題】 銅微粒子表面に銅酸化物を生成させない、耐酸化性に優れた銅微粒子を提供する。
【解決手段】 一般式(1)で表される化合物(A)を含有する被覆剤で表面を被覆されてなることを特徴とする銅微粒子。
【化1】


[式中、R1及びR2はそれぞれ独立に水素原子又は炭素数4〜18の炭化水素基であって、R1とR2が同時に水素原子となることはなく、R3及びR4はそれぞれ独立に炭素数1〜6のアルキル基又は炭素数2〜4のヒドロキシアルキル基、X+は1価のカチオンである。] (もっと読む)


【課題】金属ナノ粒子の大量生産においても高濃度で、かつ分散安定性に優れ、低温還元反応により金属が反応器内に沈着することを防止して収率が向上され、工程を短縮することができる、金属シードを用いた金属ナノ粒子の製造方法及び金属属シードを含む金属ナノ粒子を提供する。
【解決手段】本発明による金属ナノ粒子の製造方法は、非水系溶媒に界面活性剤を添加して溶液を製造するステップと、溶液に白金塩を添加して白金シード溶液を製造するステップと、白金シード溶液に金属塩を添加して反応させるステップと、を含むことを特徴とする。 (もっと読む)


【課題】所望の分散溶媒に対して良好な分散性を有する金属ナノ粒子分散液およびその製造方法、ならびに金属ナノ粒子の凝集体を提供すること。
【解決手段】極性溶媒に対して分散する性質を有し、カルボキシル基を有する有機化合物Yによりその表面が被覆され、多価アルコールエーテルを含む分散溶媒Cに対して良好な分散性を有する金属ナノ粒子の凝集体1が提供され、また前記金属ナノ粒子1の分散された金属ナノ粒子分散液を使用する。保護剤Yは、有機化合物の置換反応により被覆されるものであり、置換反応前に被覆されていた有機化合物Xは、非極性物質に対して親和性を有しかつ不飽和結合を有する。 (もっと読む)


【課題】金属イオンまたはその前駆体となる金属塩を含有する液相中で金属イオンを還元することで金属微粒子を製造する反応系において、金属微粒子の粒子構造を十分に制御し、且つ、金属微粒子の収率を向上させることが可能な金属微粒子の製造方法、並びに該製造方法によって得られる金属微粒子を提供すること。
【解決手段】金属イオンまたは該金属イオンを与える金属塩と、ポリビニルピロリドンと、アミド基を有する有機溶媒と、を含有する溶液中で、金属イオンを還元して金属微粒子を析出させる。 (もっと読む)


161 - 180 / 765