説明

Fターム[4K017FA15]の内容

金属質粉又はその懸濁液の製造 (21,321) | 物理的製造条件 (664) | 噴霧条件 (223) | 噴霧媒質 (157) | 気体 (93) | 不活性 (56)

Fターム[4K017FA15]に分類される特許

1 - 20 / 56


【課題】 平均粒径が小さく、粗大なbccFe結晶の析出が無い軟磁性合金粉末と、高い飽和磁束密度と低い保磁力が得られるナノ結晶軟磁性合金粉末と、その製造方法と、それを用いた低損失の圧粉磁心を提供すること。
【解決手段】 組成式FeSiCuで表され、79.0≦a≦86.0at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20である合金組成物からなり、平均粒径0.7μm以上5.0μm以下であることを特徴とする軟磁性合金粉末である。 (もっと読む)


【課題】 飽和磁束密度、非晶質性および耐候性に優れた垂直磁気記録媒体用軟磁性合金において、マグネトロンスパッタ時に効率良く使用できるターゲット材を提供する。
【解決手段】 Zr、Hf、Nb、TaおよびBの2種以上を含有し、残部CoおよびFe、ならびに不可避的不純物よりなり、下記式1および式2を満足し、相対密度99%以上であることを特徴とする垂直磁気記録媒体における軟磁性膜層用合金ターゲット材。
0.60≦Fe/(Fe+Co)≦0.65(at.%比) … (1)
5at%≦(Zr+Hf+Nb+Ta)+B/2≦10at% … (2)
ただし、B:7%以下とする。 (もっと読む)


【課題】インダクタ、チョークコイル、トランス等電磁気部品の小型化及び高周波域で使用可能な磁気特性の優れた複合磁性材料を提供する。
【解決手段】Fe−Si−Al系の金属磁性粉末と結着材とを添加混合し、加圧成形して成形体とした後、前記成形体に熱処理を施した複合磁性材料において、前記金属磁性粉末は異なる酸素濃度を有した金属磁性粉末A、金属磁性粉末Bからなり、前記金属磁性粉末Aの酸素濃度が1500〜6500ppm、前記金属磁性粉末Bの酸素濃度が400ppm以下であり、前記金属磁性粉末中における前記金属磁性粉末Bの含有量を5〜25wt%の範囲とし、前記金属磁性粉末Aの平均粒径をDA、前記金属磁性粉末Bの平均粒径をDBとしたとき、DBとDAが、DB/DA≦0.16となる関係を満たすこととする。 (もっと読む)


【課題】 太陽電池の光吸収薄膜層を製造するための低酸素Cu−Ga系合金粉末、およびスパッタリングターゲット材の製造方法を提供する。
【解決手段】 原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が200ppm以下としたCu−Ga系合金粉末。また、原子%で、Gaを25%以上、40%未満含み、残部Cuおよび不可避的不純物からなり、酸素含有量が250ppm未満、かつ結晶粒径が10μmを超え、100μm以下としたCu−Ga系合金スパッタリングターゲット材。さらには、上記Cu−Ga系合金粉末を原料とし、これを400〜850℃の温度で固化成形するCu−Ga系スパッタリングターゲット材の製造方法。 (もっと読む)


【課題】 本発明は、放電容量、サイクル寿命に優れるリチウムイオン二次電池負極用Sn合金粉末およびその製造方法を提供する。
【解決手段】 at%で、Co,Feの1種または2種を35〜50%、Ti,Zrの1種または2種を3〜10%含み、残部Snおよび不可避的不純物からなり、X線回折によるMSn[110]ピークに対するMSn2 [211]ピークの強度比が0.10〜2.50、MSn[110]ピークに対するSn[101]ピークの強度比が0.50以下、かつMSn[110]ピークに対するM3Sn2 [102]ピークの強度比が0.10〜1.00であることを特徴としたリチウムイオン電池負極用Sn合金粉末およびその製造方法。ただし、MはCo,Feの1種または2種である。 (もっと読む)


【課題】面内均一性に極めて優れたAg系薄膜を形成するのに有用なAg系スパッタリングターゲットを提供する。
【解決手段】Ag系スパッタリングターゲットのスパッタリング面の平均結晶粒径daveを下記手順(1)〜(3)によって測定したとき、平均結晶粒径daveは10μm以下を満足する。(手順1)スパッタリング面の面内に任意に複数箇所を選択し、選択した各箇所の顕微鏡写真(倍率:40〜2000倍)を撮影する。(手順2)各顕微鏡写真について、井桁状または放射線状に4本以上の直線を引き、直線上にある結晶粒界の数nを調べ、各直線ごとに下式に基づいて結晶粒径dを算出する。d=L/n/m式中、Lは直線の長さ、nは直線上の結晶粒界の数、mは顕微鏡写真の倍率を示す。(手順3)全選択箇所の結晶粒径dの平均値をスパッタリング面の平均結晶粒径daveとする。 (もっと読む)


【課題】肉盛合金の靭性を高めると共に、相手材との耐摩耗性を向上させることができる肉盛用合金粉末を提供する。
【解決手段】肉盛用合金粉末は、C:0.7〜1.0質量%、Mo:30〜40質量%、Ni:20〜30質量%、Cr:10〜15質量%、及び残部がCoと不可避不純物からなる合金粉末、または、C:0.2〜0.5質量%、Mo:30〜40質量%、Ni:20〜30質量%、及び残部がCoと不可避不純物からなる合金粉末である。 (もっと読む)


【課題】アトマイズ実施時に溶融金属の流れ出しを中断させずに行わせ、金属粉末の作製作業を円滑に行うことを可能とするアトマイズ用ノズルおよび該アトマイズ用ノズルを用いた金属粉末の製造方法を提供する。
【解決手段】溶融金属が流れ出る管状体14Bを備え、該管状体14Bの先端部にガスが吹き付けられてアトマイズを行うアトマイズ用ノズルにおいて、前記管状体14Bの外周面に2本以上の溝14Cが該管状体14Bの長手方向に設けられ、かつ、該溝14Cは該管状体14Bの管厚方向に貫通していない。 (もっと読む)


少なくとも2つの耐熱金属を有する合金及びこのような合金を形成するための方法が提案されている。この合金において、合金の小さな方の部分を形成する第1の耐熱金属、例えばタンタルは、合金の大きな方の部分を形成する第2の耐熱金属、例えばタングステンに完全に溶解される。この合金は、共通のるつぼにこれら2つの耐熱金属を供給するステップ(ステップS1)、電子ビームを当てることにより両方の耐熱金属を溶融するステップ(ステップS2)、前記溶融した耐熱金属を混合するステップ(ステップS3)及び前記溶融物を凝固させるステップ(ステップS4)によって形成される。溶融した状態で前記耐熱金属の成分を完全に混合することが可能であるため、凝固した合金の改善した物質特性が達成される。さらに、レニウムに代わり、タンタルをタングステンと一緒に使用することで、安価であり、耐性のある耐熱金属が製造され、この合金は例えばX線の陽極の焦点軌道の領域を形成するのに使用される。
(もっと読む)


【課題】焼結時の結晶化により粗大結晶粒を生成させず、良好な磁気特性を備えたナノコンポジット磁石を製造する方法を提供する。
【解決手段】硬磁性相と軟磁性相とから成る急冷組織から成り、結晶組織が85重量%以上である急冷合金を、加圧下で急速昇温により結晶化温度以下の温度に昇温して焼結することを特徴とするナノコンポジット磁石の製造方法。 (もっと読む)


本発明によって、純金属、2以上の金属の合金、凝集物の混合物、またはシェル構造を有する粒子とすることができるナノ粒子が、気相において製造される。装置から出ていくガスの温度が低いため、金属ナノ粒子をポリマーのような感温材料と混合することも可能である。本発明の製造方法は経済的であり、工業的規模での製造に適している。本発明の第一の実施態様は、プリントエレクトロニクスにおいて用いられるインク用の金属ナノ粒子の製造である。
(もっと読む)


【課題】 溶湯状態から凝固に至る急速冷却を最適に制御することで、Sn相中に非常に細かい(ナノオーダー:1μm以下)にSnCu合金粒子、SnMn合金粒子が分散した組織が得られる鉛フリー接合用材料およびその製造方法を提供する。
【解決手段】 Snと他の金属Mからなる合金であって、SnとMで構成される金属間化合物からなる相をSn基地中に1μm以下の微細粒子として分散させた状態にあることを特徴とする鉛フリー接合用材料。また、上記された金属間化合物は、SnとMとで構成される金属間化合物のうち最もSnの含有量の多い金属間化合物であることを特徴とする鉛フリー接合用材料およびその製造方法。 (もっと読む)


新規な軸受鋼組成と軸受を形成する方法を提供する。軸受鋼組成は、炭素0.4から0.8重量%、窒素0.1から0.2重量%、クロム12から18重量%、モリブデン0.7から1.3重量%、シリコン0.3から1重量%、マンガン0.2から0.8重量%、及び鉄78から86.3重量%からなる。 (もっと読む)


【課題】磁性体に適用した場合に、フェライト焼結体と同等の高い実数部透磁率μ’、低い虚数部透磁率μ”を発現させることができ、十分な曲げ性を付与可能な扁平状軟磁性粉末を提供する。この扁平状軟磁性粉末を用いた磁性体を提供する。
【解決手段】Fe−Si−Cr系合金よりなり、アスペクト比が100〜150の範囲内にあり、厚みが1μm以下である扁平状軟磁性粉末とする。上記扁平状軟磁性粉末は、周波数13.56MHzにて好適に適用できる。また、上記扁平状軟磁性粉末を含む磁性体とする。上記磁性体は、周波数13.56MHzにおける実数部透磁率μ’が80以上、虚数部透磁率μ”が10以下であると良い。 (もっと読む)


【課題】再溶融やフラッシュ・ショートの発生を防止し、高温雰囲気中での密着性が高く、濡れ性が優れた、回路部品の接続材料を提供する。
【解決手段】熱硬化性樹脂バインダー、金属粉末、フラックス成分を含有する熱硬化性樹脂組成物において、金属粉末が第一複合金属粉末と第二複合金属粉末とを含む。第一複合金属粉末は、Ag、Bi、Cu、In、Snを所定量含有する第1金属粒子と、Ag、Bi、Cu、In、Snを所定量含有する第2金属粒子とを含み、熱拡散により金属間化合物を形成する特性を有する。第二複合金属粉末は、Ag、Bi、Cu、In、Snを所定量含有する第3金属粒子と、Snからなる第4金属粒子とを含み、熱拡散により金属間化合物を形成する特性を有する。フラックス成分として、構造式(1)と(2)で示される化合物の少なくとも一方が用いられている。 (もっと読む)


【課題】膜の成分組成の均一性(膜均一性)に優れたCu−Gaスパッタリング膜を形成でき、かつ、スパッタリング中のアーキング発生を低減できると共に、強度が高くスパッタリング中の割れを抑制できるCu−Ga合金スパッタリングターゲットを提供する。
【解決手段】Gaを含むCu基合金からなるスパッタリングターゲットであって、その平均結晶粒径が10μm以下であり、かつ気孔率が0.1%以下であることを特徴とするCu−Ga合金スパッタリングターゲット。 (もっと読む)


【課題】金属粉末の製造方法、それにより製造された金属粉末、および金属粉末製造装置において、脱酸素された金属粉末を効率的に製造することができるようにする。
【解決手段】金属粉末製造装置1により、粉末化する金属を溶融する金属溶融工程と、カルシウムとハロゲン化カルシウムとを加熱し溶解させ、混合溶融物を形成する混合溶融物形成工程と、金属溶融工程で溶融された金属を流下ノズル4から流下させ、混合溶融物形成工程によって形成された混合溶融物を加圧して、流下された金属に吹き付けて、粒子化された金属20Aを形成する混合溶融物吹き付け工程と、混合溶融物吹き付け工程によって金属に吹き付けられた混合溶融物を、金属の表面から除去する除去工程とを備える金属粉末の製造方法を行って、金属粉末を製造する。 (もっと読む)


【課題】 低圧成形で作製可能で、従来よりも低損失なインダクタを提供する。
【解決手段】インダクタの製造に用いられる本発明の非晶質軟磁性粉末は、三次元形状がWadellの実用的球形度の平均値が0.90以上である。
これは、Wadellの実用的球形度が高い方が、インダクタ等の圧粉体に非晶質軟磁性粉末を用いた際に、粉末粒子間の接触数が抑えられ、加圧成形時により高充填が可能となり、圧粉密度および透磁率が高くなると考えられるためである。
また、粉末粒子間の接触数が抑えられることにより、インダクタ等を低圧成形で作製可能となるためである。
また、本実施形態に係る非晶質軟磁性粉末は水アトマイズ法により製造されるのが好ましい。理由は製造される非晶質軟磁性粉末を真球に形成し易いからである。 (もっと読む)


金属、とりわけAlもしくはMgまたはそれらを1つ以上含む合金より作られるエンジン52、とりわけ、燃焼エンジンもしくはジェットパワーユニットまたはエンジン部品54、56が本明細書内に開示される。エンジンまたはエンジン部品は、ナノ粒子、とりわけCNTによって強化された前記金属の複合材料より作られ、強化された金属は、前記ナノ粒子によって少なくとも部分的に分離された金属結晶を含む微細構造を有する。 (もっと読む)


【課題】金属および金属酸化物を含有するターゲットから、工程数を少なくかつ不純物の混入を少なく金属を回収する金属回収方法、および工程数が少なくかつ再生利用の効率の高い、ターゲットの製造方法を提供する。
【解決手段】金属および金属酸化物を含有するターゲット1から該金属を回収する金属回収方法であって、ターゲット1を、前記金属酸化物は溶融も分解もさせず、かつ、前記金属を溶融させるように加熱して、該金属を該金属酸化物から分離する金属回収方法であり、ターゲット1を、該ターゲット1に含まれる前記金属酸化物の焼結体が通過しない大きさに設定された貫通孔12Bが底面にある上段ルツボ12および該貫通孔12Bの下に設けられた下段ルツボ14を備えてなる2段ルツボ10の該上段ルツボ12内で加熱し、溶融した前記金属を該下段ルツボ14内に流れ込ませて前記金属酸化物から分離する。 (もっと読む)


1 - 20 / 56