説明

Fターム[4K017FB06]の内容

金属質粉又はその懸濁液の製造 (21,321) | 化学的製造条件 (1,723) | 還元剤 (1,041) | 気体 (183) | 水素 (128)

Fターム[4K017FB06]に分類される特許

41 - 60 / 128


【課題】磁気特性と酸化安定性の両立が可能な優れた磁気記録媒体用磁性粉末とその粉末を用いた磁気記録媒体の提供。
【解決手段】酸素により酸化膜形成処理を行った後に、活性を持った気体中、例えば還元能力を持ったCOやH2などにより緩やかな気相活性化処理を行い、次いで再度酸化処理を行うことによって酸化膜の状態を変化させる磁性粉末の製造法および主にその方法で作成されるESCAにより観測される酸素の結合状態が低エネルギー側にシフトした耐酸化性酸化物皮膜を有する磁性粉末ならびにその粉末を用いることで保存安定性を改善させた磁気記録媒体を提供する。 (もっと読む)


【課題】高い粘性をもつポリアクリル酸ナトリウムが残留する不具合を抑え、多面体形状の白金ナノ粒子を高い収率で担体に担持させるのに有利な白金ナノ粒子の担持方法を提供する。
【解決手段】担持方法は、ハロゲン元素のうちの少なくとも1種と白金とを含む原料と、担体とを準備する準備工程と、原料と担体とが共存していると共にポリアクリル酸ナトリウムが含まれていない状態において、原料を還元剤で還元して白金ナノ粒子を前記担体に担持させる還元工程とを実施する。 (もっと読む)


【課題】微細で均一な粒径を持ったニッケル粉を大量に低コストで製造する方法の提供。
【解決手段】アルカリ土類金属を含む水酸化ニッケル粉を焙焼処理して酸化ニッケル粉とし、この酸化ニッケル粉を還元処理してニッケル粉とするニッケル粉の製造方法において、ニッケル塩を含む水溶液を中和晶析してアルカリ土類金属を0.002〜1質量%含む水酸化ニッケル粉の形成工程(工程A)と、粒度分布調整された水酸化ニッケル粉を300〜1000℃の非還元性ガス中に分散した状態で酸化ニッケル粉へと焙焼処理すると共に、非還元性ガスおよび酸化ニッケル粉の焙焼処理により生じる水蒸気を水酸化ニッケル粉1gに対して0.2リットル/分以上の速度で排気する水酸化ニッケル粉の酸化ニッケル粉への焙焼工程(工程B)と、その酸化ニッケル粉を300〜500℃の温度で還元処理してニッケル粉を形成する還元工程(工程C)とを含むニッケル粉の製造方法。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


【課題】水素還元熱処理することによってFeの粗大化部分の形成が抑制されて個々の粒子が孤立したFePd/Fe磁性ナノ粒子を与え得るPd/Feナノ粒子、その製造方法、およびFeの粗大化部分の形成が抑制されて個々の粒子が孤立しているFePd/Fe磁性ナノ粒子を提供する。
【解決手段】TEM像、HAADF像およびEDXによる元素分析の少なくとも1つで評価してコア/シェル構造が確認できるPdコア相とFeシェル相とからなり、EDXで求めた平均のPd組成比率が50atm%以下であるコア/シェル型のPd/Feナノ粒子、そのコア/シェル型のPd/Feナノ粒子の製造方法、コア/シェル型Pd/Feナノ粒子を水素還元熱処理してなるFePd/Feナノ粒子。 (もっと読む)


【課題】量産性が高く、粒子径、粒子形状等の粒子形態の制御が可能であり、凝集がなく分散性に優れ、粒子が均一であり、高結晶である金属酸化物等の無機微粒子の製造方法及びその製造装置を提供すること。
【解決手段】無機微粒子を連続式水熱反応法により製造する方法であって、無機物を溶解若しくは懸濁させた液と、アルカリ水溶液とを混合して無機アルカリ塩水溶液又はスラリーを含む反応前駆体を調製し、加圧した液相中の当該反応前駆体の濃度を均一化した上で水熱反応を行うことを特徴とする無機微粒子の製造方法。 (もっと読む)


【課題】半導体LSI、磁気記録媒体、平面型ディスプレイ、携帯電話などの発達に伴い使
用済みの薄膜材料形成用白金族元素含有スパッタリングターゲットが大量に生じている。元来は高純度のターゲット材を、効率よく、簡単で、低コストな手法で再生させる技術の開発が求められている。
【解決手段】高純度廃却白金族元素含有ターゲット材を出発原料とし、溶融塩中で塩素化せしめ、次に生成した金属塩化物を選択的に還元処理することで、高融点金属や貴金属の粉末を高純度の状態で得る。得られた金属粉末は、それを使用してスパッタリングターゲット材製造に使用される。 (もっと読む)


【課題】 電子部品材料用として分散性が十分に確保され、不純物品位が低いニッケル粉とその簡潔な製造方法を提供する。
【解決手段】 ニッケル塩水溶液をアルカリ水溶液で中和して水酸化ニッケルの沈殿を生成させる工程(A)と、該水酸化ニッケルを空気中で熱処理して酸化ニッケルを生成させる工程(B)と、該酸化ニッケル粉表面を水溶性のアルカリ金属ハロゲン化物で被覆あるいは付着させる工程(C)と、該水溶性のアルカリ金属ハロゲン化物で表面を被覆あるいは付着させた酸化ニッケルを還元ガス雰囲気中で還元してニッケル粉とする工程(D)と、前記アルカリ金属ハロゲン化物を洗浄除去する工程(E)とを備えた製造方法とした。
本方法により得られるニッケル粉は、粒度分布D90が1.0μm以下、比表面積が4.6m/g以下、塩素、ナトリウム、カリウム品位が100質量ppm以下となる。 (もっと読む)


【課題】平均長軸径が5〜100nmの微粒子でありながら、粒度が均斉であると共に、超微細な粒子の存在割合が低減された、良好な粉体の保磁力分布SFDを有する強磁性金属粒子粉末を提供する。
【解決手段】炭酸水素アルカリ水溶液又は炭酸アルカリ水溶液と水酸化アルカリ水溶液との混合アルカリ水溶液と第一鉄塩水溶液とを反応させて得られる第一鉄含有沈殿物を含む水懸濁液を非酸化性雰囲気下において熟成させた後に、酸化剤によってゲータイト核晶粒子を生成させ、次いで、該核晶粒子表面にゲータイト層を成長させ、得られたゲータイト粒子粉末を100〜250℃で加熱処理し、300〜650℃、水蒸気が90vol%以上で加熱処理してヘマタイト粒子粉末とし、更に、加熱還元する。 (もっと読む)


【課題】 本発明は、微細な粒子、殊に、平均長軸径が5〜100nmの微粒子でありながら、超微細な粒子の存在割合が低減された、良好な粉体の保磁力分布SFDを有する強磁性金属粒子粉末を提供する。
【解決手段】 平均長軸径が5〜100nmの微粒子でありながら、超微細な粒子の存在割合が低減された、良好な粉体の保磁力分布SFDを有する強磁性金属粒子粉末は、ゲータイト粒子粉末を加熱処理してヘマタイト粒子粉末とした後、該ヘマタイト粒子粉末を加熱還元して強磁性金属粒子粉末を得る製造法において、前記ゲータイト粒子粉末の加熱処理を、非還元性雰囲気中100〜250℃の温度範囲で行った後、300〜650℃の温度範囲であって、水蒸気が90vol%以上の条件下で行うことによって得ることができる。 (もっと読む)


【課題】多面体形状の白金ナノ粒子をカーボン担体に効率よく生成させることができる白金ナノ粒子の製造方法を提供する。
【解決手段】カーボン担体と、分散媒と、白金を含む白金化合物と、カーボン担体の表面に吸着可能な吸着剤と、白金の結晶の特定の部位をキャッピング可能なキャッピング剤とを準備する。カーボン担体と分散媒と白金化合物と吸着剤とが混合する第1混合液を形成する。その後、第1混合液とキャッピング剤とが混合す第2混合液を形成する。第2混合液を還元処理して白金ナノ粒子を生成させると共に白金ナノ粒子をカーボン担体に担持させる。 (もっと読む)


【課題】 遷移金属元素を強制固溶し、超硬合金原料や触媒用原料に用いるのに適したタングステン合金粉末を提供する。
【解決手段】 コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められることを特徴とし、式[1]で示される遷移金属固溶タングステン合金粉末にある。
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
このタングステン合金粉末を用いると、炭化タングステンの骨格内に、コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素とタングステンと炭素との固溶体相が含まれている遷移金属固溶タングステン炭化物、及びタングステン炭化物分散超硬合金を提供することができる。 (もっと読む)


【課題】 従来技術による金属粉末より粒径が小さく、且つ高い飽和磁束密度を併せ持つ鉄−ニッケル合金粉末を安価に提供すると共に、この鉄−ニッケル合金粉末を用いたインダクタ用圧粉磁心を提供すること。
【解決手段】 本発明は、鉄を含む無機酸塩または有機酸塩及びニッケルを含む無機酸塩または有機酸塩を混合したものを出発原料として、従来技術よりも低い温度域の水素気流中にて水素還元処理を施すことで、従来技術による金属粉末より粒径が小さく、且つ高い飽和磁束密度を有する鉄−ニッケル合金粉末を得ることができる。また、本発明の鉄−ニッケル合金粉末を用い、結合材の含有量を1重量%以上5重量%以下の比率とすることで、従来技術によるインダクタ用圧粉磁心より高い飽和磁束密度で、低損失、高効率なインダクタ用圧粉磁心が得られる。 (もっと読む)


【課題】Ni−Pt合金インゴットの硬度を低下させて圧延を可能とし、圧延ターゲットを安定して効率良く製造する技術を提供する。
【解決手段】3Nレベルの原料Niを電気化学的に溶解する工程、電解浸出した溶液をアンモニアで中和する工程、活性炭を用いてろ過し不純物を除去する工程、炭酸ガスを吹き込んで炭酸ニッケルとし、還元性雰囲気で高純度Ni粉を製造する工程、3Nレベルの原料Ptを酸で浸出する工程、浸出した溶液を電解により高純度電析Ptを製造する工程からなり、これらの製造された高純度Ni粉と高純度電析Ptを溶解する工程からなる。 (もっと読む)


【課題】コスト低減を図りつつ、高い粘性をもつポリアクリル酸ナトリウムが残留する不具合を抑え、多面体形状の白金粒子の回収率を高めると共に、白金ナノ粒子が有する性能を確保するのに有利な白金ナノ粒子の製造方法を提供する。
【解決手段】製造方法は、アルカリ金属およびアルカリ土類金属のうちの少なくとも一つと白金とを含む化合物を準備する準備工程と、化合物を還元剤で還元して白金ナノ粒子を形成する還元工程とを実施する。キャピング剤にポリアクリル酸ナトリウムを使用することを廃止または低減している。 (もっと読む)


【課題】電子線を用いて低コストで多量に金属ナノ粒子を製造することができる金属ナノ粒子製造装置を提供する。
【解決手段】金属イオン及び界面活性剤を含む水溶液が一方向に流れる反応流路20と、反応流路20を流れる水溶液に対して電子線を照射する電子線照部26とを備え、反応流路20は、電子線照射部26から照射される電子線の浸透深さ以下の深さを有することを特徴とする。さらに、電子線照射部26は、反応流路20を流れる水溶液の流れ方向に幅方向に延在するシート状の電子線を照射する。 (もっと読む)


【課題】高周波プラズマ法による無機材料及び金属材料の製造において、高周波プラズマ中への供給原料を固体粉末とした場合でも原料を安定に供給することができる方法の提供。
【解決手段】原料粉末を高周波プラズマフレーム中に供給して無機材料又は金属材料を製造する方法において、前記原料粉末として、流動性指数が50以上である粒子粉末を用いることにより、原料を安定に供給することができるため、良好な粒子径分布を有する無機材料及び金属材料を得ることができる。 (もっと読む)


【課題】本発明は、金属ナノ粒子分散体、当該分散体の製造方法および当該金属ナノ粒子を用いた電子デバイスに関する技術において、有機物・無機物上に膜を形成することができ、特に被覆の難しい無機物上に被膜を形成することができる技術を提供するものである。
【解決手段】本発明は、平均粒子径が1nm〜100nmの金属ナノ粒子が溶媒に分散してなる金属ナノ粒子分散体であって、当該金属ナノ粒子がアルコール処理を施されていることを特徴とする金属ナノ粒子分散体である。 (もっと読む)


【課題】微細な粒子、殊に、平均長軸径が5〜60nmの微粒子でありながら、高い保磁力を有する金属磁性粒子粉末を提供する。
【解決手段】アルミニウム含有量が全Feに対してAl換算で3〜50原子%のゲータイト粒子粉末を加熱処理してヘマタイト粒子粉末とした後、該ヘマタイト粒子粉末を加熱還元して金属磁性粒子粉末を得、次いで、表面酸化被膜を形成し、不活性ガス雰囲気下、400〜500℃の温度範囲で加熱処理し、次いで、再度、加熱還元処理を行うとともに表面酸化被膜を形成して磁気記録用金属磁性粒子粉末が得られる。 (もっと読む)


【課題】粒子径や合金組成を制御し易く、しかも結晶性や純度が高い貴金属微粒子を得る、貴金属微粒子の製造方法を提供する。
【解決手段】下記工程を有する貴金属微粒子の製造方法:
(1)アルカリ金属塩化物の溶融塩と貴金属との混合物に塩素ガスを吹き込むことにより、貴金属の塩化物を含む溶融混合物を得る工程1、
(2)不活性雰囲気中において溶融混合物にアルカリ金属炭酸塩を添加することにより、沈殿物として貴金属酸化物を得る工程2、
(3)貴金属酸化物をアルカリ金属炭酸塩及びアルカリ土類金属炭酸塩の少なくとも1種とともに微細化することにより、貴金属酸化物微粒子を含む混合物を得る工程3、
(4)工程3で得られた混合物を水素含有雰囲気において熱処理した後、熱処理物を酸処理することにより、貴金属微粒子を得る工程4。 (もっと読む)


41 - 60 / 128