説明

Fターム[4K017FB08]の内容

金属質粉又はその懸濁液の製造 (21,321) | 化学的製造条件 (1,723) | 還元剤 (1,041) | 固体 (109)

Fターム[4K017FB08]の下位に属するFターム

炭素 (15)
Ca、Mg (57)

Fターム[4K017FB08]に分類される特許

1 - 20 / 37


【課題】ヒドラジンの分解反応を利用する水素発生方法において、水素を選択性よく高効率で発生させることができる方法を提供する。
【解決手段】鉄とニッケルの複合金属からなる、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物の分解反応による水素発生用触媒、並びに該触媒を、ヒドラジン及びその水和物からなる群から選ばれた少なくとも一種の化合物に接触させることを特徴とする水素発生方法。 (もっと読む)


【課題】FeとNiとの合金であって磁性を有するテトラテーナイト粉の製造方法であって、より低温での合成によりテトラテーナイト粉を得られる製造方法を提供する。
【解決手段】FeとNiを含む合金の水酸化物である複合水酸化物を用意し、この複合水酸化物に水素化カルシウムを混合して混合物10とし、この混合物10を容器20に入れて320℃未満の還元温度で磁石30によって100〜10000Oe程度の磁場を印加しながら還元し、テトラテーナイト粉を得る。 (もっと読む)


【課題】還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末とその製造方法を提供。
【解決手段】希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含む希土類−遷移金属系合金粉末の製造方法などにより提供。 (もっと読む)


【課題】メカノケミカル反応を利用し、稀少金属を効率よく、回収することができる実用化可能な方法を提供する。
【解決手段】大気圧雰囲気下で、稀少金属酸化物粉末を、ランタノイド元素の粉末とメカノケミカル反応させて、稀少金属を得る。ランタノイド元素粉末としては、セリウムが好ましい。稀少金属としては、インジウム、錫及びアンチモン等の回収が可能で、前記メカノケミカル反応は、機械的に攪拌処理しながら実施されるのが好ましく、この方法は、廃液晶パネル等から稀少金属を回収するのにも有用である。 (もっと読む)


【課題】元素Ti、Zr、Hf、V、Nb、Ta及びCrの金属粉末もしくは金属水素化物粉末の製造方法。
【解決手段】これらの元素の酸化物が還元剤と混合され、この混合物が炉中で、還元反応が開始するまで、場合により水素雰囲気下に(ついで金属水素化物が形成される)加熱され、反応生成物が浸出され、かつ引き続いて洗浄され、かつ乾燥され、その場合に使用された酸化物が0.5〜20μmの平均粒度、0.5〜20m/gのBETによる比表面積及び94質量%の最小含量を有する。 (もっと読む)


【課題】 本発明は、粒子同士の焼結が抑制された金属ナノ粒子粉末を得ることのできる製造方法を提供する。
【解決手段】 鉄、コバルト、ニッケル、銅、チタン、シリコン、ルテニウム、ロジウム、パラジウム、銀、インジウム、ガリウム、レニウム、イリジウム、白金、金、及び水銀から選ばれる少なくとも1種類以上の元素を含む酸化物、水酸化物、硫化物、硫酸化物、ホウ化物、ホウ酸化物、塩化物、硝酸化物、及び窒化物の粉末と還元剤とを乾式混合し熱処理することを特徴とする一次粒子径が3〜500nmの金属ナノ粒子粉末の製造方法である。 (もっと読む)


【課題】 絶縁性かつ耐酸化性皮膜を有する酸化物と金属Feの軟磁性の磁性複合粉末の提供、ならびにその製法を得る。
【解決手段】 金属元素MとFeを含む酸化物M−Fe−Oから成る粉末を熱処理して部分的に還元することによって得られる、金属Feと酸化物が共存した磁性複合粉末の製造方法。酸化物のギブスの生成自由エネルギー(酸素分子1モルあたり)のΔGがΔGM−O<ΔGFe−Oの関係を満たす金属元素Mを含んだ酸化物M−Fe−O粉末が出発原料であることが望ましい。 (もっと読む)


【課題】チタンの製造において使用される前駆体を安価とし、さらに、金属の溶融、鋳造及び鍛造の間の酸化に起因するロスを低減し、チタン、その合金及びその化合物を効率的且つ安価なプロセスで製造する。
【解決手段】チタン含有材料からチタン金属を製造する方法は、チタン含有材料からMIITiFの溶液を製造する工程、(M)aXbの添加によって溶液からMTiFを選択的に沈殿する工程、選択的に沈殿されたMTiFを用いてチタンを製造する工程、を包含する。MIIは、ヘキサフルオロチタネートを形成するタイプのカチオンであり、Mはアンモニウム及びアルカリ金属カチオンから選択され、Xはハライド、サルフェート、ニトライト、アセテート、及びニトレートから選択され、a及びbは1又は2である。 (もっと読む)


本明細書では、約15wt%未満のアルミニウムを含むチタン−アルミニウム合金を製造する方法が開示されている。本方法は、チタン−アルミニウム合金を生成するために必要な化学量論量以上の量のチタン亜塩化物が、アルミニウムによって還元されることにより、元素チタンを含む反応混合物が形成される第1ステップと、さらに、元素チタンを含む反応混合物が加熱されて、チタン−アルミニウム合金が形成される第2ステップとを含む。チタンアルミナイドの形成をもたらす反応が最小限になるように、反応速度が制御される。 (もっと読む)


コンデンサ用タンタル粉末の製造方法は、(1)酸化タンタルと第1の還元剤粉末とを均一に混合することによって低酸化状態のタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第1の還元工程と、(2)工程1で得られた低酸化状態のタンタル粉末と第2の還元剤粉末とを均一に混合することによってより高酸化状態のタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第2の還元工程と、(3)工程2で得られた高酸化状態のタンタル粉末と第3の還元剤粉末とを均一に混合することによって最終的なタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第3の還元工程とを含む。還元剤の酸化生成物及び残留還元剤を各還元工程後に反応生成物から除去する。
(もっと読む)


【課題】水素同位体分離等に使用される白金族ナノ粒子担持材料を、効率的に、かつ、廉価に製造可能な方法を提供する。
【解決手段】好気性条件下で培養したシュワネラ・ビュートリフェイシャンス等の鉄還元菌の微生物細胞を、好気性条件下、白金族イオン含有液に接触させて、微生物細胞の表面に、白金族元素のナノ粒子を析出させ、この白金族ナノ粒子を微生物細胞とともに、無機質担体に担持させ、白金族ナノ粒子担持材料を製造する。 (もっと読む)


【解決課題】保護剤を含まない白金コロイド溶液に関し、高濃度であっても、凝集や沈殿を生じにくく、長期間安定性に優れるものを提供する。
【解決手段】本発明は、白金粒子からなる白金コロイドと、水又は水及び有機溶媒の混合溶媒よりなる溶媒とからなる保護剤を含まない白金コロイド溶液において、白金コロイド溶液中の白金含有量が300〜20000ppm、かつ、溶液はpH5.0〜12.0、電気伝導度100mS/m以下である白金コロイド溶液である。本発明に係る白金コロイド溶液は、白金塩溶液中の白金イオンを還元して白金粒子を形成することにより製造可能であるが、還元工程前に白金塩溶液のpH、溶存酸素濃度を調整する工程、及び、還元工程後に得られた白金コロイド溶液を限外ろ過して電気伝導度を調整すると共にpHを調整する工程、を有することが必要である。 (もっと読む)


【課題】透明性と導電性を維持でき、透明導電体を形成することができる金属ナノワイヤー及び金属ナノワイヤーの製造方法、並びに該金属ナノワイヤーを含有し、塗布後の保存安定性、及び分散安定性が向上した水性分散物、及び透明導電体の提供。
【解決手段】銀と、銀以外の金属とからなる金属ナノワイヤーであって、該銀以外の金属の標準電極電位が銀の標準電極電位よりも貴であり、長軸長さが1μm以上、短軸長さが300nm以下であることを特徴とする金属ナノワイヤーである。銀以外の金属の金属ナノワイヤーにおける含有量が、銀に対して0.5原子%〜30原子%である態様、などが好ましい。 (もっと読む)


【課題】還元拡散法によって、磁気特性を下げることなく、水素ガスを使用せずまたは使用量を低減して還元物を崩壊させて希土類−遷移金属−窒素系磁石粉末を安価に安全にかつ安定的に生産できる製造方法および、それを用いたボンド磁石用組成物、並びに各種機器を小型化、高特性化しうるボンド磁石を提供する。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とし、次いで、得られた還元物を崩壊させる工程おいて、水または水と水素ガスを用いて崩壊することを特徴とする下記式(1)で表される希土類−遷移金属−窒素系磁石粉末の製造方法を提供する。
Fe(100−x−y−z) ・・・(1)
(式(1)中、Rは希土類元素、MはCu、Mn、Co、Cr、Ti、NiおよびZrからなる群から選択される遷移金属元素を示し、また、x、y、zは原子%で、4≦x≦18、0.3≦y≦23、15≦z≦25を満たす。) (もっと読む)


本発明は、ニオブ亜酸化物又はニオブの粉末を調製するための方法であって、原材料としてのニオブ酸化物を還元剤と混合し、減圧又は不活性ガス又は水素ガスの雰囲気中において600〜1300℃の範囲の温度で反応を行い、反応生成物を浸出させて残留した還元剤と還元剤の酸化物と他の不純物を除去し、減圧又は不活性ガスの雰囲気中において1000〜1600℃の範囲の温度で熱処理し、そしてふるいにかけてコンデンサグレードのニオブ亜酸化物又はニオブの粉末を得ることを含む前記方法に関する。本発明にしたがえば、ニオブ酸化物は、鉱酸により容易に除去することができる還元剤により、直接、コンデンサグレードのニオブ亜酸化物又はニオブへと還元され、その際、反応の速度を制御することができ、反応により直接ニオブ酸化物をコンデンサグレードのニオブ亜酸化物又はニオブの粉末へと還元することができる。本発明にしたがえば、本方法は簡単であり、収率が高く、生産性が高い。得られる生成物は、流動性がよく、不純物が少なく、酸素の分布が均一であり、電気特性がよい。 (もっと読む)


【課題】粉砕操作という簡便な方法で金属を回収することができ、容易に実施可能な金属の回収方法を提供する。
【解決手段】アンモニアガス雰囲気下または窒素ガス雰囲気下で、密封容器内に、粉砕用ボールと、所定の金属を含む金属酸化物から成る化合物の粉末と、アルカリ金属の窒化物の粉末とを封入する。密封容器を所定時間、所定の速度で回転させて、化合物の粉末と窒化物の粉末とを混合して粉砕し、所定の金属を含有する混合粉末を生成する。生成された混合粉末を水洗して、所定の金属を得る。 (もっと読む)


【課題】別途の前駆体物質を作製することなく、非水系システムにて一般的な銅塩を銅前駆体物質として用いて、サイズが均一で高濃度な銅ナノ粒子を合成することができ、環境に優しく、高価な装置を必要としない経済的な銅ナノ粒子製造方法及びこれにより製造された銅ナノ粒子を提供する。
【解決手段】CuCl、Cu(NO、CuSO、(CHCOO)Cu及び銅アセチルアセトネート(Cu(acac))からなる群より選ばれる少なくとも一つの銅塩を脂肪酸に混合して解離させて混合物を形成する段階と、上記混合物を加熱して反応させる段階とを含む、銅ナノ粒子の製造方法。 (もっと読む)


【課題】耐食性に優れた被覆金属微粒子の粉末および磁気ビーズを提供する。
【解決手段】Ti酸化物中に金属粒子を内包した被覆金属微粒子の粉末であって、前記金属はその酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属であり、前記金属粒子の粒径に対する個数分布が複数のピークを有することを特徴とする被覆金属微粒子の粉末を用いる。この粉末はTi酸化物中に複数の金属粒子を内包した被覆金属微粒子と、Ti酸化物中に1つの金属粒子を内包した被覆金属微粒子とを有する。 (もっと読む)


【課題】耐食性に優れ、かつ比表面積が大きい被覆金属微粒子、及びかかる被覆金属微粒子を製造する方法を提供する。
【解決手段】Tiを含む粉末(ただしTi酸化物粉末を除く)と、酸化物の標準生成自由エネルギーがΔGM-O>ΔGTiO2の関係を満たす金属Mの酸化物粉末とを混合する工程と、得られた混合粉末を非酸化性雰囲気中で650〜900℃の温度で熱処理することによって、前記金属Mの酸化物を還元するとともに、得られた金属Mの微粒子の表面をTiOを主体とするTi酸化物で被覆して被覆金属微粒子を得る工程と、前記被覆金属微粒子を生体擬似液に浸漬する工程を有することを特徴とする。 (もっと読む)


【課題】ファインライン化が進む積層セラミックコンデンサの内部電極、回路基板の導体パターン、太陽電池・プラズマディスプレイパネル用基板の電極、及び回路等の電子部品に適用でき、生産性、及び感光性ペーストとしての特性が高い銀粉、及びその製造方法等の提供。
【解決手段】銀イオンを含有する水性反応系に還元剤を加えることにより、銀粉を還元析出させ、その後、反応スラリーを濾過して得たケーキを気流式乾燥機にて乾燥することにより、目的とする銀粉を得る。 (もっと読む)


1 - 20 / 37