説明

Fターム[4K017FB10]の内容

金属質粉又はその懸濁液の製造 (21,321) | 化学的製造条件 (1,723) | 還元剤 (1,041) | 固体 (109) | Ca、Mg (57)

Fターム[4K017FB10]に分類される特許

1 - 20 / 57


【課題】永久磁石用として使用されるCu含有希土類−鉄−硼素系合金粉末とそれを還元拡散法により低コストで効率的に製造する方法を提供。
【解決手段】希土類酸化物粉末もしくは希土類酸化物粉末および希土類金属粉末と、含鉄粉末、含硼素粉末からなる原料粉末に前記酸化物粉末を還元するのに十分な量の還元剤を混合し、還元拡散法によりCu含有希土類−鉄−硼素系合金粉末を製造する方法であって、原料粉末として、さらに含銅粉末を組成範囲がCu換算で0.003〜1.5重量%となるように混合し、該混合物を不活性ガス雰囲気下で900℃〜1200℃の温度で0.5時間以上保持して熱処理し、得られた反応生成混合物を湿式処理した後、乾燥することを特徴とするCu含有希土類−鉄−硼素系合金粉末の製造方法;この製造方法により得られたCu含有希土類−鉄−硼素系合金粉末によって提供。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得る工程、得られた希土類−鉄母合金を窒化処理する工程とを含む下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記希土類酸化物を鉄粉末、及び還元剤と混合する前に、前記希土類酸化物のイグロス成分を0.1質量%以下に低減する条件で加熱乾燥処理することを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】合金粉末全体に窒素を均一に供給することにより、均一に窒化され磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、工業的量産性に適した製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供する。
【解決手段】下記の一般式(1)で表されるピニングタイプの希土類−遷移金属−窒素系磁石粉末を得る製造方法において、該粉末を窒化する際、窒化炉1に設けられた2箇所以上の供給口10から窒化用ガスを流通することを特徴とする磁石粉末の製造方法などにより上記課題を解決する。RαFe(100−α−β−γ)βγ・・・式(1)(式(1)中、Rは希土類元素の一種または二種以上、MはCu、Mn、Co、Cr、Ti、NiおよびZrからなる群から選択される一種または二種以上、α、β、γは原子%であり、4≦α≦18、0.3≦β≦23、15≦γ≦25を満たす。) (もっと読む)


【課題】元素Ti、Zr、Hf、V、Nb、Ta及びCrの金属粉末もしくは金属水素化物粉末の製造方法。
【解決手段】これらの元素の酸化物が還元剤と混合され、この混合物が炉中で、還元反応が開始するまで、場合により水素雰囲気下に(ついで金属水素化物が形成される)加熱され、反応生成物が浸出され、かつ引き続いて洗浄され、かつ乾燥され、その場合に使用された酸化物が0.5〜20μmの平均粒度、0.5〜20m/gのBETによる比表面積及び94質量%の最小含量を有する。 (もっと読む)


【課題】磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とする工程と、この還元拡散反応生成物を窒化炉に装入し、窒化用ガスを流通しながら加熱し、窒化処理して希土類−遷移金属−窒素系磁石粉末を得る製造方法において、前記希土類−遷移金属合金粉末を窒化する際、窒化用ガスが、窒化炉1に設けられた2箇所以上の供給口10から流通され窒化を均一に行う。 (もっと読む)


【課題】コンデンサ用として好適な粉体抵抗(導電率)を有する一酸化ニオブ粉を得るためのニオブ粉の製造方法を提供する。
【解決手段】高酸化数ニオブ酸化物を還元してニオブ粉を生成するニオブ粉の製造方法において、高酸化数ニオブ酸化物と、還元反応で生成する粒子同士の結合を抑制する粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して一次還元ニオブ粉を生成する第一還元処理と、前記一次還元ニオブ粉と、粒子成長抑制剤とを混合し、卑金属を還元剤として用いて還元を行い、粒子成長抑制剤を除去して二次還元ニオブ粉を生成する第二還元処理とを含む、ことを特徴とする。 (もっと読む)


【課題】還元拡散法により得た希土類−遷移金属母合金粉末を均一に窒化し、安価で磁気特性の優れた希土類―鉄―窒素系磁石粉末の製造法を提供する。
【解決手段】遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属母合金を含む還元拡散反応生成物を得て、該還元拡散反応生成物から還元剤を除去する湿式処理を行い、乾燥する還元拡散法により希土類−遷移金属母合金粉末を得る。得られた粉末を窒化ガス雰囲気下で250〜700℃に加熱し1〜3.5時間保持した後、100℃以下に冷却する工程を2回以上繰り返し、粉末の膨張収縮による粉末の崩壊により新生面が生じ均一な窒化が実現できる。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得て、次に、該還元拡散反応生成物を湿式処理装置に装入し、水洗、デカンテーション、酸洗して崩壊させるとともに還元拡散反応生成物から還元剤を除去し、引き続き乾燥した後、得られた希土類−鉄母合金粉末を窒化処理して下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記還元拡散反応生成物の湿式処理から乾燥工程までを一貫して非酸化性雰囲気中で行うことを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】 絶縁性かつ耐酸化性皮膜を有する酸化物と金属Feの軟磁性の磁性複合粉末の提供、ならびにその製法を得る。
【解決手段】 金属元素MとFeを含む酸化物M−Fe−Oから成る粉末を熱処理して部分的に還元することによって得られる、金属Feと酸化物が共存した磁性複合粉末の製造方法。酸化物のギブスの生成自由エネルギー(酸素分子1モルあたり)のΔGがΔGM−O<ΔGFe−Oの関係を満たす金属元素Mを含んだ酸化物M−Fe−O粉末が出発原料であることが望ましい。 (もっと読む)


【課題】合金粉末の製造に必要な投入エネルギーの低減及び製造時間の短縮により、希土類金属を含む合金粉末の製造コストを低減できる合金粉末製造方法を提供する。
【解決手段】希土類金属酸化物と、他の金属と、水素化又は窒化によって発熱する還元剤との還元拡散反応によって、希土類金属を含む合金粉末を製造する合金粉末製造方法に、前記希土類金属酸化物、他の金属及び還元剤を、水素雰囲気又は窒素雰囲気中で加熱する工程を備える。 (もっと読む)


【課題】高価な後処理工程を必要とすることなく、所望の形態を維持することが可能である、相応する酸化物を還元することにより特別に調整された形態を有するバルブ金属粉末の製造法を提供する。
【解決手段】a)所望の形態の前駆物質の製造、b)バルブ金属の酸化物への前駆物質の変換、c)熱処理による酸化物の構造の安定化およびd)形態を維持しながら行う、安定化された酸化物の還元の工程を含む、バルブ金属粉末の製造法。 (もっと読む)


コンデンサ用タンタル粉末の製造方法は、(1)酸化タンタルと第1の還元剤粉末とを均一に混合することによって低酸化状態のタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第1の還元工程と、(2)工程1で得られた低酸化状態のタンタル粉末と第2の還元剤粉末とを均一に混合することによってより高酸化状態のタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第2の還元工程と、(3)工程2で得られた高酸化状態のタンタル粉末と第3の還元剤粉末とを均一に混合することによって最終的なタンタル粉末を得る工程であって、還元反応を水素及び/又は不活性若しくは真空ガス下で進行させる第3の還元工程とを含む。還元剤の酸化生成物及び残留還元剤を各還元工程後に反応生成物から除去する。
(もっと読む)


【課題】Feリッチ相が大幅に減少し、良好な保磁力と優れた角形性を有し、還元拡散法で安価に製造しうる希土類−鉄−マンガン−窒素系磁石粉末を提供。
【解決手段】希土類元素と、Mnと、Nと、残部が実質的にFeまたはFeおよびCoからなり、希土類元素が22〜27重量%、Mnが7重量%以下、Nが3.5〜6.0重量%である希土類−鉄−マンガン−窒素系磁石粉末であって、特定の原料粉末を用いた特定の還元拡散法と特定の窒化条件で製造され、Th2Zn17型結晶構造を有する相とアモルファス相とを含有するとともに、それ以外に共存するFeリッチ相は、下記の式で表される粉末X回折における回折線の強度比(X)が10%以下になるまで低減していることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末によって提供する。
X=I(Fe)/Im
[式中、I(Fe)は、2θが44〜45°(Cu−Kα)に現れる回折線の強度であり、ImはTh2Zn17型結晶構造の回折線の中で最大の強度を表す] (もっと読む)


【課題】還元拡散反応により、安価で高特性の磁石粉末を安定的に生産できる希土類−遷移金属−窒素系磁石粉末の製造方法を提供。
【解決手段】酸化鉄粉末を水溶媒でスラリー化し、スラリーのpH値が2〜5の範囲に維持されるように1mol/L以下の希酸を添加しつつ希土類酸化物を所定量投入して溶解させ、アルカリ金属塩もしくはアルカリ土類金属塩を添加してpH>7.0で希土類水酸化物を酸化鉄表面に析出させた原料混合粉末を製造する第一の工程、得られた原料混合粉末を水素熱処理する第二の工程、水素熱処理された混合粉末に還元剤成分としてアルカリ土類金属を所定量添加し、混合して、不活性ガス雰囲気中で熱処理した後、同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程、引き続き、窒化処理する第四の工程、窒化処理物を湿式処理し、還元剤成分の副生成物を分離除去し、その後得られた粗粉末を解砕する第五の工程からなる。 (もっと読む)


【課題】湿式混合した原料粉を還元拡散反応し、逆軸の核の発生および、発熱による粒成長を抑制して、安価で高特性の磁石粉末を安定的に生産できる希土類−鉄−窒素系磁石粉末の製造方法を提供。
【解決手段】磁石原料となる酸化鉄粉末と希土類酸化物粉末を所定量の割合で有機溶媒中で湿式混合、または酸化鉄粉末を水溶媒でスラリー化し、スラリーのpH値が7.0より小さい場合は、アルカリ金属塩又はアルカリ土類金属塩を加えた後、希土類酸化物粉末を湿式混合、混合物をろ過後乾燥し混合粉末を得る。得られた混合粉末を希土類鉄複合酸化物の生成量が6重量%以下となるように水素熱処理する。さらにアルカリ土類金属を所定量添加し、不活性ガス雰囲気中で、熱処理、冷却し希土類−鉄系母合金を得て、引き続き、アンモニアと水素とを含有する混合ガス気流中で窒化処理し、次に得られた窒化処理物を湿式処理し、得られた粗粉末を解砕する。 (もっと読む)


【課題】原料混合物を還元拡散反応し安価で高特性の磁石粉末を安定的に生産できる希土類−遷移金属−窒素系磁石粉末の製造方法および、及び得られる希土類−遷移金属−窒素系磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供する。
【解決手段】遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合して反応容器に装入し、非酸化性雰囲気中で加熱焼成する還元拡散法により、前記希土類酸化物を希土類金属に還元した後、これを前記遷移金属粉末に拡散させて所望の希土類−遷移金属系母合金を含む還元拡散反応生成物を得る工程を具備する希土類−遷移金属−窒素系磁石粉末の製造方法において、原料混合物3を反応容器1に装入する工程で、反応容器中で原料混合物を加圧することなく、振動付与装置10により体積を3%以上低減させる。 (もっと読む)


【課題】 保磁力、角形比に優れ、更に大気中350℃以上でも発火することなく磁気特性を保持することが可能な希土類−鉄−窒素系磁性粉末およびその製造方法を提供することを目的とする。
【解決手段】 一般式R100−x−y−zで表される磁性粉末であって、 前記M成分は、粉体内部の表面側に偏在していることを特徴とする(但し、RはYを含む希土類元素のうちの少なくとも一種、TはFeと遷移金属のうちの少なくとも一種、Mは300℃〜1200℃において標準ギブスエネルギーが−80kcal〜−300kcalの範囲である少なくとも一種の元素あるいはその酸化物であり、3<x<30、5<y<15、0.001<z<5である。)。 (もっと読む)


【課題】保磁力(HcJ)および角形性(Hk)に優れた希土類−鉄−窒素系合金粉末を収率よく、かつ、低コストで製造する。
【解決手段】希土類酸化物粉末および鉄粉末を含む原料粉末と、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤を混合した後、希土類酸化物粉末を還元して希土類元素を鉄に拡散させて、希土類−鉄系母合金粉末と副生成物とを含有する多孔質塊状反応生成物を得る際に、前記還元剤として、4.75mm以下の粒径を有し、かつ、70質量%以上が0.5mmを超え、2.5mm以下である粒径を有するものを用い、その後、得られた多孔質塊状反応生成物を、窒素を含有する雰囲気中で熱処理して、窒化された希土類−鉄系合金粉末を得て、さらに、湿式処理により、該合金粉末から前記副生成物を除去して、希土類−鉄−窒素系合金粉末を分離する。 (もっと読む)


固体電解質コンデンサにとりわけ適したバルブメタルアグロメレート粉末、及びバルブメタルオキシドアグロメレート粉末が記載されており、これは焼結後、高い嵩密度を有する、すなわち閉鎖孔が少ない多孔質焼結体になる。アグロメレート粉末は、良好な圧縮性と、比表面積に依存した優れた滑り係数を有する。 (もっと読む)


【課題】連続処理によって、四塩化チタンを金属チタンに還元する、金属チタンの製造方法および装置を提供する。
【解決手段】本発明による製造方法は、RFコイルを備えたプラズマトーチによりRF熱プラズマフレームを発生させる段階と、RF熱プラズマフレームへ四塩化チタンおよびマグネシウムを供給して四塩化チタンを金属チタンに還元させる段階と、塩化マグネシウムの沸点以上且つ金属チタンの沸点以下の雰囲気で金属チタンを集積または堆積させる段階とを含む。 (もっと読む)


1 - 20 / 57