説明

Fターム[4K018BA20]の内容

粉末冶金 (46,959) | 粉末 (8,026) | その他 (874)

Fターム[4K018BA20]に分類される特許

61 - 80 / 874


【課題】成膜の品質を向上させるルテニウム合金スパッタリングターゲットを提供する。
【解決手段】ルテニウム粉末とルテニウムよりも酸化力が強い金属粉末との混合粉末を焼結して得られるルテニウム合金焼結体ターゲットであって、ガス成分を除くターゲットの純度が99.95wt%以上であり、ルテニウムよりも酸化物を作りやすい金属を5at%〜60at%含有し、相対密度が99%以上、不純物である酸素含有量が1000ppm以下であることを特徴とするルテニウム合金スパッタリングターゲットであり、ターゲット中に存在する酸素を低減させて、スパッタ時のアーキングやパーティクルの発生を少なくし、焼結密度を向上させてターゲットの強度を高め、さらにSi半導体へ微量添加されているB及びPの組成変動を防止するために、ターゲット中のB及びP不純物の量を厳しく制限する。 (もっと読む)


【課題】低コストで、に第三元素を添加しない、低酸素MoCrターゲット材を製造する方法およびMoCrターゲット材を提供すること。
【解決手段】Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材の製造方法であって、(1)Mo焼結体を平均粒径20〜500μmに粉砕してMo粉末を作製する工程と、(2)該Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程と、(3)平均粒径20〜500μmのCr原料粉末を準備する工程と、(4)前記還元処理Mo粉末と前記Cr原料粉末とを混合した混合粉末を作製する工程と、(5)該混合粉末を加圧焼結してMoCr焼結体を作製する工程とを有するMoCrターゲット材の製造方法。 (もっと読む)


【課題】 機械加工性に優れ、主としてCu,Gaを含有する化合物膜が成膜可能なスパッタリングターゲット及びその製造方法を提供すること。
【解決手段】 本発明のスパッタリングターゲットは、Ga:20〜40at%、Sb:0.1〜3at%、残部がCu及び不可避不純物からなる成分組成を有する。このスパッタリングターゲットの製造方法は、少なくともCu,GaおよびSbの各元素を単体またはこれらのうち2種以上の元素を含む合金として粉末とした原料粉末を作製する工程と、前記原料粉末を真空、不活性雰囲気、または還元性雰囲気で熱間加工する工程を有し、前記原料粉末に含まれるGaがCuGa合金またはGaSb合金として含有されていることを特徴とする。 (もっと読む)


【課題】簡易な方法で、所望の微細孔、特にナノメータオーダの微細孔を有する金属多孔質体を提供する。
【解決手段】平均粒子径が50nm〜1μmの範囲内にある第1の金属粒子と、第2の金属材料を含有する金属粒子の平均粒子径が5nm〜500nmの範囲内にあり、第1の金属粒子の平均粒子径以下である第2の金属粒子とを準備する。次いで、前記第1の金属粒子及び前記第2の金属粒子を混合して混合物を得るとともに、前記第2の金属粒子を溶融させ、得られた溶融物によって前記第1の金属粒子を結合し、金属多孔質体を製造する。 (もっと読む)


【課題】極性溶媒に分散安定な錫微粒子の製造方法、およびそれを用いた錫インクを提供する。
【解決手段】アルコール中に溶解させたロジンを塩化錫水溶液中で共存させて懸濁液とした後、この懸濁液を還元処理してロジンで被覆した錫微粒子を析出させることを特徴とする錫微粒子の製造方法であり、また、前記錫微粒子が析出した還元処理液を極性溶媒に置換した後、23℃における粘度を5〜1000mPa・sに調製したことを特徴とするインクジェット用錫インクである。 (もっと読む)


【課題】熱膨張率が小さく、かつ熱伝導率が大きいCr−Cu合金を用いて、製造プロセスが簡略で、経済的で生産性が高く、高精度の半導体用放熱部品および半導体用ケース,半導体用キャリア,パッケージを提供する。
【解決手段】粉末冶金法を適用して製造したCr−Cu合金に加工を施して得たCr−Cu合金板を冷間プレス加工した成形体であり、かつCr含有量が30質量%超え80質量%以下で残部がCuおよび不可避的不純物からなり、不可避的不純物がO:0.15質量%以下,N:0.1質量%以下,C:0.1質量%以下,Al:0.05質量%以下,Si:0.10質量%以下である半導体用放熱部品である。 (もっと読む)


【課題】生産効率の向上及び作業員の負担減を図る。
【解決手段】巻出装置の下流側に設置され、基材表面に被覆材を供給する被覆材供給装置と、被覆材供給装置の下流側に設置され、一対のプレスロール間に基材を挿通させながら基材表面に被覆材を連続的に圧着させる圧着装置と、圧着装置の上流側の基材搬送速度を計測する第1の速度計測器と、圧着装置の下流側の基材搬送速度を計測する第2の速度計測器と、圧着装置から送出されるシート材の厚さを計測する厚さ計測器と、第1の速度計測器、第2の速度計測器及び厚さ計測器から得られる各計測結果に基づいて基材に圧着された被覆材の膜厚を算出する膜厚算出装置とを具備する。 (もっと読む)


【課題】高い制動力と優れた制動力の高温安定性を有する焼結摩擦材料の提供。
【解決手段】質量%で、7.5%以上のFe、50%以上のCu、5〜15%の黒鉛、0.3〜7%の二流化モリブデンおよび0.5〜10%のシリカを含有し、Fe/Cuが0.15〜0.40である焼結摩擦材料。 (もっと読む)


【課題】複合ナノ粒子、ナノ粒子およびその生成方法の提供。
【解決手段】種々の局面において、架橋・収縮した高分子物質内のナノ粒子を生成するための方法が提供され、この方法は、a)高分子物質を含む高分子溶液を提供する工程、b)一つまたは複数の前駆体部分の周りで少なくとも高分子物質の一部分を収縮させる工程、c)この高分子物質を架橋する工程、d)前駆体部分の一部分を改変して、一つまたは複数のナノ粒子を形成し、それによって複合ナノ粒子を形成する工程を包含する。種々の実施形態において、閉じ込められたナノ粒子の完全な熱分解によって、閉じ込められていないナノ粒子が生成され得、閉じ込められたナノ粒子の不完全な熱分解によって、炭素被覆されたナノ粒子が生成され得る。 (もっと読む)


【課題】希土類元素の組成比率がR2Fe14Bの化学量論組成より少ない磁石粉末を用いて比較的低い熱間成形圧力で残留磁束密度Brの高い等方性磁石を製造する。
【解決手段】本発明のバルク磁石の製造方法では、まず、希土類元素R(RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素)の含有量が2原子%以上12原子%以下の組成であるR−Fe−B系急冷合金磁石粉末の粒子と、希土類元素R’(R’は、Nd、Pr、DyおよびTbからなる群から選択された少なくとも1種の元素)を含有する希土類含有粉末の粒子とが混合した混合粉末であって、前記希土類含有粉末の割合が全体の1質量%以上30質量%以下の範囲にある混合粉末を用意する。この混合粉末を加圧しながら500℃以上850℃以下の温度に加熱して成形し、バルク磁石を形成する。 (もっと読む)


【課題】安価であり、厳しい高温条件下においても伸縮性が高くかつ耐磨耗性を両立する溶射材料の提供する。
【解決手段】NiCr合金と、Cr32とを含み、造粒焼結法により粒子状に形成され、前記NiCr合金におけるCr含有量が40〜50質量%である溶射材料。前記溶射材料は、Cr32を100質量%とする場合のNiCr合金の配合比が、25〜35質量%であるのが好ましい。また、基材の表面に、本発明の溶射材料を高速フレーム溶射することにより、前記基材上に溶射被膜を形成する方法も提供される。 (もっと読む)


【課題】切削性能、耐熱亀裂性、および寸法精度に優れた刃先交換型切削チップを提供する。
【解決手段】本発明の刃先交換型切削チップは、少なくとも基材を含むものであって、該基材は、8.5〜12.5質量%の鉄系金属と、0.28〜1.13質量%のTaと、不可避不純物とを含み、かつ残部がWCである超硬合金からなり、該超硬合金の組織中のWC粒子は、0.8〜2μmの平均粒子径であり、基材の抗磁力をHC(kA/m)とし、基材に含まれるCoの質量%をMCo(質量%)とすると、下記式(I)を満たし、かつ超硬合金の組織中にTaを主成分とする相が析出していないことを特徴とする。
−1.2×MCo+31.7≧HC≧−1.2×MCo+27.2 ・・・(I) (もっと読む)


【課題】めっき法以外の方法によって、スズと鉄とタングステンからなる耐食性の三元合金皮膜を基材上に形成させる方法を提供すること。
【解決手段】本発明は、基材表面にスズ、鉄及びタングステンからなる耐食性合金皮膜を形成させる方法であって、
スズ、鉄及びタングステンの金属粉末を混合し、圧縮成形することによって、スパッタリングターゲットを形成する工程Aと、
真空チャンバー内に前記基材と前記スパッタリングターゲットとを対向させ、スパッタリング法によってスズ、鉄及びタングステンからなる合金皮膜を形成する工程Bとを有し、
前記金属粉末は、タングステンの質量を1とした場合、スズの質量は5以上7以下であり、鉄の質量は2以上4以下である、ことを特徴とする方法に関する。耐食性合金皮膜の結晶構造は、アモルファスである。 (もっと読む)


【課題】磁性金属微粒子を含む磁気インクに存在する自然発火性という問題が改良された磁気インクであって、空気や水に触れても安全で自動小切手処理のほか、文書認証のための偽造防止印刷に好適に用いることができる相変化磁気インクの提供。
【解決手段】相変化インク担体と、任意の着色剤と、任意の分散剤と、任意の相乗剤と、任意の酸化防止剤と、磁気コアおよびその上に配置されたシェルを含む界面活性剤被覆磁性ナノ粒子とを含む相変化磁気インク。 (もっと読む)


【課題】磁気インク文字認識(MICR)ならびに磁気符号化として使用されるか、または自動小切手処理のほか、同一に見える印刷物における磁性粒子を検出することなどによる文書認証のための偽造防止印刷のためのMICRインクとして偽造防止印刷用途に使用される磁気インクを提供する。
【解決手段】相変化インク担体と、任意の着色剤と、任意の分散剤と、任意の相乗剤と、任意の酸化防止剤と、磁気コアおよびその上に配置されたシェルを含む被覆磁性ナノ粒子とを含む相変化磁気インク。 (もっと読む)


【課題】 既存の問題点であるアルミニウムと炭素材料の接合に関する問題を解決し、電気アーク又は電気化学的方法を用いて、重さが軽く力学的強度に優れた炭素材料−アルミニウム複合体を製造した。
【解決手段】 本発明は、電気化学的方法を用いてアルミニウム−炭素材料のAl−C共有結合を形成する方法を提供する。上記方法は、陽極と、炭素材料の連結された陰極とで構成され、電解液で満たされた電気化学装置に電位を印加して、陰極に連結された炭素材料の表面をアルミニウムでメッキする段階を含むことができる。更に、本発明は、上記電気化学装置に電位を印加し炭素材料の表面をアルミニウムでメッキして共有結合を形成したアルミニウム−炭素材料複合体を製造する方法、及び上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


【課題】 規則化温度の低い膜を成膜することができると共にパーティクルの発生が抑制可能な磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法を提供すること。
【解決手段】 磁気記録媒体膜形成用スパッタリングターゲットが、一般式:{(FePt100−x(100−y)Ag(100−z)、ここで原子比により30≦x≦80、1≦y≦30、3≦z≦63で表される組成を有した焼結体からなる。また、このスパッタリングターゲットの製造方法は、AgPt合金粉と、FePt合金粉と、Pt粉と、グラファイト粉またはカーボンブラック粉と、の混合粉末を、真空または不活性ガス雰囲気中でホットプレスする工程を有している。 (もっと読む)


【課題】 規則化温度の低い膜を成膜することができると共にパーティクルの発生が抑制可能な磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法を提供すること。
【解決手段】 磁気記録媒体膜形成用スパッタリングターゲットが、一般式:{(FePt100−x(100−y)(100−z)、ここでAがAuおよびCuの少なくとも一方からなる金属であり、原子比により30≦x≦80、1≦y≦30、3≦z≦63で表される組成を有した焼結体からなる。また、このスパッタリングターゲットの製造方法は、AuPt合金粉およびCuPt合金粉の少なくとも一方と、AgPt合金粉と、FePt合金粉と、Pt粉と、グラファイト粉またはカーボンブラック粉と、の混合粉末を、真空または不活性ガス雰囲気中でホットプレスする工程を有している。 (もっと読む)


【課題】軟磁性金属材料を用いた圧粉成形体は、形状によって充分な強度を得られず、歪取りのための熱処理の際に寸法形状が変化したり、磁気特性が低下する場合があった。
【解決手段】本発明による圧粉成形体の製造方法は、3つまたは4つの官能基を持つエポキシ樹脂を結合剤として用い、軟磁性金属粒子を含む金属粒子を加圧して所定の形状に成形することにより成形体を得るステップと、得られた成形体を焼鈍して残留応力を除去するステップとを具えるが、脂環式化合物を含む硬化剤を結合剤に添加するステップや、結合剤を加熱してこれを硬化させるステップをさらに具えることもできる。これによって製造された圧粉成形体は、例えば磁気センサーの磁気シールドとして好適である。 (もっと読む)


【課題】可視光線の反射率が低い上に黒色度が高く、光遮蔽性に優れ、さらに可視光域の吸光度の波長依存性が小さく、自然な色調の黒色膜が得られる黒色材料及びこの黒色材料を用いた黒色材料分散液、並びに黒色塗料、黒色遮光膜及びこの黒色遮光膜を有する黒色膜付き基材を提供すること。
【解決手段】少なくとも銀元素及び錫元素を含有する微粒子を含む金属微粒子からなり、該銀元素の含有量が30質量%以上99質量%以下であり、前記金属微粒子の円直径相当の平均一次粒子径が3nm以上100nm以下である黒色材料であって、分散媒中に固形分量が0.0005体積%になるようにして前記黒色材料を分散させた分散液における、光路長10mmでの380nmから800nmの平均吸光度が0.8以上であり、420nmにおける吸光度d420と680nmにおける吸光度d680との比d420/d680が0.6以上2.5以下である黒色材料である。 (もっと読む)


61 - 80 / 874