説明

Fターム[4K018BB04]の内容

粉末冶金 (46,959) | 粉末の特性 (4,143) | 粒径、粒度分布が特定されているもの (3,024)

Fターム[4K018BB04]の下位に属するFターム

超微粒子 (851)

Fターム[4K018BB04]に分類される特許

141 - 160 / 2,173


【課題】熱膨張率が小さく、かつ熱伝導率が大きいCr−Cu合金を用いて、製造プロセスが簡略で、経済的で生産性が高く、高精度の半導体用放熱部品および半導体用ケース,半導体用キャリア,パッケージを提供する。
【解決手段】粉末冶金法を適用して製造したCr−Cu合金に加工を施して得たCr−Cu合金板を冷間プレス加工した成形体であり、かつCr含有量が30質量%超え80質量%以下で残部がCuおよび不可避的不純物からなり、不可避的不純物がO:0.15質量%以下,N:0.1質量%以下,C:0.1質量%以下,Al:0.05質量%以下,Si:0.10質量%以下である半導体用放熱部品である。 (もっと読む)


【課題】HDDR法を用いて良好な角型性と高い保磁力を有するR−T−B系永久磁石を提供する。
【解決手段】 50%体積中心粒径が1μm以上10μm未満であり、R214B相を含むR−T−B系合金(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)の粉末を用意する。この粉末を成型して圧粉体を作製する。圧粉体を250℃以上600℃以下の温度の水素雰囲気中で熱処理を施す第一熱処理工程と、圧粉体に対し、650℃以上1000℃以下の水素雰囲気中で熱処理を施す第二熱処理工程と、圧粉体に対し、650℃以上1000℃以下の真空または不活性雰囲気中で熱処理を施す第三熱処理工程とを実行する。第一熱処理工程終了時から第二熱処理工程の開始時までの昇温は、真空または不活性雰囲気中で行う。 (もっと読む)


【課題】 本発明は、導電性及び耐マイグレーション性に優れた銀コート銅粉とその製造法、該銀コート銅粉を含有する導電性ペースト、導電性接着剤、導電性膜、及び電気回路に関する。
【解決手段】 銅粉末と銀微粒子粉末とを混合攪拌して銅粉末の粒子表面に銀微粒子粉末を付着させる銀コート銅粉の製造法において、全処理工程を乾式で行うと共に、銀微粒子粉末として粒子表面を分散剤により表面被覆された銀微粒子粉末を用いることで、導電性及び耐マイグレーション性に優れた銀コート銅粉を得ることができる。 (もっと読む)


【課題】焼成型導電性ペーストの銀粉として用いたとき、当該焼成型導電性ペーストの焼成の際、ガス発生に起因する膨張が起こらない銀粉およびその製造方法、並びに導電性ペーストを提供する。
【解決手段】50〜900℃の範囲において、50℃における値を基準とした熱膨張率の最大値が0.3%以下であり、かつ、BET値(比表面積)が0.1m/g以上0.9m/g以下である銀粉を提供する。 (もっと読む)


【課題】均一な組成のCu−Ga合金スパッタリングターゲットを得る。
【解決手段】Cu粉末を、水素ガスを含む混合ガス雰囲気中で150℃〜300℃の温度で撹拌し、撹拌したCu粉末に、Gaを10質量%〜45質量%の割合で配合した混合粉末を、真空又は不活性雰囲気中で30℃〜300℃の温度で攪拌することにより、直接、Cu−Ga合金粉末を形成する。Cu−Ga合金粉末を、真空又は不活性ガス雰囲気中で250℃〜1000℃の温度で熱処理し、熱処理したCu−Ga合金粉末を、真空又は不活性ガス雰囲気中で250℃〜1000℃の温度と、5MPa〜30MPaのプレス圧力とでホットプレス法により焼結する。 (もっと読む)


【課題】Ruターゲットの代替として用いることができるRu−Pd系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】RuとPdを主要成分として含有するRu−Pd系スパッタリングターゲットであって、Ruを1〜40at%含有して残部がPdおよび不可避的不純物からなるRu−Pd合金相と、不可避的不純物を含むRu相とが互いに分散した構造を有するようにする。
また、Ruを1〜40at%含有し、残部がPdおよび不可避的不純物からなるRu−Pd合金粉末をアトマイズ法で作製し、作製した該Ru−Pd合金粉末に、粉末全体に対するPdの含有量が1〜50at%となるように不可避的不純物を含むRu粉末を混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形して、Ru−Pd系スパッタリングターゲットを製造する。 (もっと読む)


【課題】原料鉄粉である粗製鉄粉の不純物濃度によらず、安定して所望の目標濃度範囲の製品鉄粉を、生産性高く製造できる、鉄粉の仕上熱処理方法および仕上熱処理装置を提供する。
【解決手段】粗製鉄粉を連続式移動床9に載置して、連続的に仕上熱処理装置に装入し、該粗製鉄粉に、まず予備処理ゾーン31で、水素ガスおよび/または不活性ガス雰囲気中で450〜1100℃の温度域に加熱する予備処理を施し、ついで、脱炭ゾーン、脱酸ゾーン、脱窒ゾーンで、脱炭、脱酸、脱窒のうちの少なくとも2種の処理を施す。予備処理ゾーンでは、前記した少なくとも2種の処理で使用する雰囲気ガスとは別に、雰囲気ガスとして水素ガスおよび/または不活性ガスを連続式移動床9の移動方向と同一方向の流れとなるように、予備処理ゾーン31の上流側から導入50し、下流側から排出6するようにする。 (もっと読む)


【課題】酸素等の不純物の量の少ないPd合金系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】Pdを主要成分として含有するPd合金系スパッタリングターゲットであって、V、Nb、Taのうちの少なくとも1種以上を合計で1〜60at%含有し、残部がPdおよび不可避的不純物からなり、ターゲット全体に対する酸素含有量を2000質量ppm以下にする。
また、V、Nb、Taのうちの少なくとも1種以上を合計で1〜60at%含有し、残部がPdおよび不可避的不純物からなるPd合金粉末をアトマイズ法で作製し、作製した該Pd合金粉末を加圧下で加熱して成形してPd合金系スパッタリングターゲットを製造する。 (もっと読む)


【課題】安価であり、厳しい高温条件下においても伸縮性が高くかつ耐磨耗性を両立する溶射材料の提供する。
【解決手段】NiCr合金と、Cr32とを含み、造粒焼結法により粒子状に形成され、前記NiCr合金におけるCr含有量が40〜50質量%である溶射材料。前記溶射材料は、Cr32を100質量%とする場合のNiCr合金の配合比が、25〜35質量%であるのが好ましい。また、基材の表面に、本発明の溶射材料を高速フレーム溶射することにより、前記基材上に溶射被膜を形成する方法も提供される。 (もっと読む)


【課題】切削性能、耐熱亀裂性、および寸法精度に優れた刃先交換型切削チップを提供する。
【解決手段】本発明の刃先交換型切削チップは、少なくとも基材を含むものであって、該基材は、8.5〜12.5質量%の鉄系金属と、0.28〜1.13質量%のTaと、不可避不純物とを含み、かつ残部がWCである超硬合金からなり、該超硬合金の組織中のWC粒子は、0.8〜2μmの平均粒子径であり、基材の抗磁力をHC(kA/m)とし、基材に含まれるCoの質量%をMCo(質量%)とすると、下記式(I)を満たし、かつ超硬合金の組織中にTaを主成分とする相が析出していないことを特徴とする。
−1.2×MCo+31.7≧HC≧−1.2×MCo+27.2 ・・・(I) (もっと読む)


【課題】希土類元素の組成比率がR2Fe14Bの化学量論組成より少ない磁石粉末を用いて比較的低い熱間成形圧力で残留磁束密度Brの高い等方性磁石を製造する。
【解決手段】本発明のバルク磁石の製造方法では、まず、希土類元素R(RはLaおよびCeを実質的に含まない少なくとも1種の希土類元素)の含有量が2原子%以上12原子%以下の組成であるR−Fe−B系急冷合金磁石粉末の粒子と、希土類元素R’(R’は、Nd、Pr、DyおよびTbからなる群から選択された少なくとも1種の元素)を含有する希土類含有粉末の粒子とが混合した混合粉末であって、前記希土類含有粉末の割合が全体の1質量%以上30質量%以下の範囲にある混合粉末を用意する。この混合粉末を加圧しながら500℃以上850℃以下の温度に加熱して成形し、バルク磁石を形成する。 (もっと読む)


【課題】高温強度等に非常に優れた耐熱高強度アルミニウム合金を提供する。
【解決手段】本発明の耐熱高強度アルミニウム合金は、全体を100質量%(以下単に「%」という)としたときに、Fe:3〜6%、Zr:0.66〜1.5%、Ti:0.6〜1%、Tiに対するZrの質量比(Zr/Ti):1.1〜1.5、残部:Alと不可避不純物および/または改質元素となる合金組成を有することを特徴とする。本発明の耐熱高強度アルミニウム合金は、主に母相とAl−Fe系金属間化合物相(第一化合物相)からなり、この第一化合物相との境界近傍にある母相中にL1型Al−(Zr、Ti)系金属間化合物(第二化合物相)が整合的に析出し得る。この第二化合物相は高温環境下でも安定であり、高温強度等を担う第一化合物相の粗大化等を第二化合物相が阻止することにより、本発明の耐熱高強度アルミニウム合金は優れた耐熱性を発揮すると考えられる。 (もっと読む)


【課題】Nd−Fe−B系永久磁石薄膜などの永久磁石薄膜の磁気特性を向上させることができる、永久磁石薄膜用スパッタリングターゲット及びその製造方法の提供。
【解決手段】原子比率による組成式が、R100−x−y(Rは希土類元素のうち少なくとも一種であってNd及び/又はPrを必ず含み、Tは遷移元素のうち少なくとも一種であってFeを必ず含み、MはB又はBとCであって50原子%≦B/Mを満足する)で表され、x、yが、17≦x≦20、7≦y≦10を満足する組成からなり、酸素含有量が1500ppm以下の焼結体である。 (もっと読む)


【課題】導電性及び耐マイグレーション性に優れた導電性粒子を提供する。
【解決手段】銀粒子と、銀粒子を被覆する銀合金及び銀複合材から選ばれる少なくとも1種類以上の被覆材とを備える導電性粒子を構成する。 (もっと読む)


【課題】過酷条件下においても優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石およびその製造方法を提供する。
【解決手段】表面改質されたR−Fe−B系焼結磁石は、25〜40質量%の希土類元素:R、0.6〜1.6質量%のB、0〜1.0質量%のAl、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga,Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択される少なくとも1種の添加元素:M、残部は、磁石全体の0.01〜2.5質量%がCoによって置換されたFe、および不可避不純物からなる組成を有するもので、表面改質された部分が少なくとも4層を有する改質層からなり、この改質層が、磁石の内側から順に、R、Fe、Co、Bおよび酸素を含む主層、Co濃化層、R濃化層、最表層を少なくとも有する。 (もっと読む)


【課題】めっき法以外の方法によって、スズと鉄とタングステンからなる耐食性の三元合金皮膜を基材上に形成させる方法を提供すること。
【解決手段】本発明は、基材表面にスズ、鉄及びタングステンからなる耐食性合金皮膜を形成させる方法であって、
スズ、鉄及びタングステンの金属粉末を混合し、圧縮成形することによって、スパッタリングターゲットを形成する工程Aと、
真空チャンバー内に前記基材と前記スパッタリングターゲットとを対向させ、スパッタリング法によってスズ、鉄及びタングステンからなる合金皮膜を形成する工程Bとを有し、
前記金属粉末は、タングステンの質量を1とした場合、スズの質量は5以上7以下であり、鉄の質量は2以上4以下である、ことを特徴とする方法に関する。耐食性合金皮膜の結晶構造は、アモルファスである。 (もっと読む)


【課題】 優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石の製造方法を提供すること。
【解決手段】 酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石に対し、230℃〜260℃で熱処理を行うことを特徴とする。 (もっと読む)


【課題】
W−ThO合金からなる陰極材料の代替材料となる、放射性元素であるトリウムを含まないタングステン合金からなる陰極材料を提供する。
【解決手段】TIG、プラズマ溶射、プラズマ切断、放電加工、放電灯等に使用される放電陰極材料として用いられるタングステン陰極材料に希土類酸化物粒子とタングステン炭化物を微細分散させることで、希土類酸化物の還元と拡散を促進し、陰極表面への希土類元素の供給を確保し放電特性を向上させる。 (もっと読む)


【課題】低損失な圧粉成形体、及びその圧粉成形体を製造することができる圧粉成形体の製造方法、圧粉成形体を具えるリアクトル、コンバータ、電力変換装置を提供する。
【解決手段】軟磁性粒子の外周に絶縁被膜が被覆された被覆軟磁性粒子を複数具えてなる被覆軟磁性粉末を用いて圧粉成形体を製造する方法で、素材準備工程と、照射工程とを具える。素材準備工程では、被覆軟磁性粉末を加圧成形した素材成形体を用意する。照射工程では、素材成形体の表面の一部にレーザを照射する。素材成形体の表面の一部にレーザを照射することにより、素材成形体の表面で複数の軟磁性粒子の構成材料同士が導通した導通部の分断箇所を増加することができ、圧粉成形体の損失を低減できる。 (もっと読む)


【課題】HDDR磁粉を用い、重希土類元素の使用を抑えつつ、高い保磁力をもったR−T−B系永久磁石の製造方法を提供する。
【解決手段】HDDR法によるR−T−B系粉末(Rは、Nd及び/又はPrをR全体に対して95原子%以上含む希土類元素、TはFe又はFeの一部をCo及び/又はNiで置換した、Feを50原子%以上含む遷移金属元素)と、R’(Nd及び/又はPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)と25原子%以上65原子%以下のAlからなるR’−Al系合金粉末とを準備する。R−T−B系粉末に対するR’−Al系粉末の質量比を1/10以下とした混合粉末を、R214B相のキュリー点以下の温度で成形した圧粉体を550℃以上R’−Al系合金粉末の液相滲み出し開始温度Tp以下で熱間圧縮成形し、不活性雰囲気または真空中において550℃以上900℃以下の温度で熱処理する。 (もっと読む)


141 - 160 / 2,173