説明

Fターム[4K018BC19]の内容

粉末冶金 (46,959) | 粉末の処理 (4,435) | 複合化処理 (2,226) | 拡散、浸透処理 (58)

Fターム[4K018BC19]に分類される特許

1 - 20 / 58


【課題】表面の触媒活性が抑制されており、そのため、内部電極層に用いて、積層セラミックコンデンサを製造するときに、脱バインダー処理に際して、内部電極層におけるクラックの生成がない含硫黄ニッケル微粒子の製造方法を提供する。
【解決手段】本発明によれば、ニッケル微粒子を硫黄化合物の存在下に水熱処理して、ニッケル微粒子に対して0.05〜1.0重量%の範囲で硫黄を含有させることを特徴とする含硫黄ニッケル微粒子の製造方法が提供される。 (もっと読む)


【課題】 耐食性、耐焼付き性に優れた高硬度、高靭性を有する、粉末から成形の高速度鋼で、この全体が窒化されている鋼材を提供する。
【解決手段】 質量%で、C:0.85〜1.20%、Si:≦0.5%、Mn:≦0.5%、Cr:3.8〜6.0%、Mo:5.6〜8.0%、W:5.1〜8.0%、V:3.0〜6.0%、N:0.4〜1.5%を含有し、これらはC+N:1.25〜2.50%、Mo+W/2:8.3〜11.0%、および耐食性指数の4.7(Mo+W/2)+1.4N−Cr−2.1Mn:≧32.5%を満足し、残部がFeおよび不可避不純物からなる鋼合金で、析出する窒化物がバナジウム系窒化物(VNまたは一部炭化物を含むVCN)からなり、その窒化物の平均粒径が1μm以下で、かつ、鋼材の断面積中に占める面積率が5%以上で、硬さが65HRC以上である高靱性で、耐食性、耐焼付き性に優れた窒化粉末高速度鋼。 (もっと読む)


【課題】保磁力が向上し製造工程が短縮された磁性材料用粉末の製造方法及び保磁力が向上した永久磁石を提供する。
【解決手段】磁性材料用粉末の製造方法は、磁性材料用粉末の原料及び前記原料に拡散させる拡散材料を反応炉内へ投入する原料投入工程と、前記反応炉内へ水素を供給すると共に前記反応炉内を加熱しつつ、前記原料及び前記拡散材料を撹拌する撹拌工程と、前記撹拌工程で撹拌された前記原料を前記反応炉内で水素化分解させて分解生成物を得る水素化分解工程と、前記反応炉内で前記分解生成物から水素を放出させ、前記分解生成物の水素濃度を低減し磁性材料粉末を得る脱水素再結合工程と、を含む。 (もっと読む)


【課題】DYまたはTBを用いてND−FE−B焼結永久磁石を作製する方法および永久磁石を提供すること。
【解決手段】永久磁石を作製する方法が記載されている。一実施形態では、本方法は、所望の組成を有する第1の合金粉末を準備するステップであり、合金粉末はネオジム、鉄およびホウ素を含有する、準備するステップと、第1の合金粉末が、ジスプロシウム、テルビウムまたは両方の容積濃度を超過しているジスプロシウム、テルビウムまたは両方の表面濃度を有するように、ジスプロシウム、ジスプロシウム合金、テルビウムまたはテルビウム合金で第1の合金粉末を被覆するステップと、粉末冶金法を用いて、被覆された合金粉末から永久磁石を形成するステップであり、永久磁石はジスプロシウム、テルビウムまたは両方の非均一分布をその中に有する、形成するステップとを含む。また、永久磁石が記載されている。 (もっと読む)


【課題】希少資源である希土類元素を使用せずに磁性材料の特性を改善すること。
【解決手段】磁粉の粒子の表面に、水素,窒素,フッ素,金属元素を含有し、窒素よりも水素が多くかつ金属元素よりフッ素が多いフッ素化合物の膜を形成させ、この膜に含まれる元素を磁粉の粒子を構成する結晶の格子間に侵入させることで、希土類元素を用いることなく磁粉の磁気特性を改善させた磁性材料を得ることができる。 (もっと読む)


【課題】磁気特性向上を図るため、磁性体表面にフッ素を含む層を低温かつ連続的に適切な膜厚で形成することができるフッ化物コート膜形成処理液、およびフッ化物コート膜形成方法を提供する。
【解決手段】フッ化物コート膜を形成する処理液は、アルコールを主成分とする溶媒と、前記溶媒中に分散した希土類又はアルカリ土類金属のフッ化物と、で構成され、X線回折で検出されるピークの少なくとも1つは、1度よりも大きい半値幅を形成する処理液である。また、絶縁膜を形成する。 (もっと読む)


【課題】均一な組成のCu−Ga合金スパッタリングターゲットを得る。
【解決手段】Cu粉末とGaとが質量比で85:15〜55:45の割合で配合された混合粉末を、不活性雰囲気中で撹拌しながら30℃〜400℃の温度で加熱して合金化した後、合金化物を粉砕及び粉砕物を混合して、Cu−Ga合金粉末を作製し、このCu−Ga合金粉末を焼結してGaのばらつきが3.0質量%以内のCu−Ga合金スパッタリングターゲットを製造する。 (もっと読む)


【課題】磁気特性が向上した希土類−遷移金属−窒素磁石粉末の製造方法、製造装置及び得られる希土類−遷移金属−窒素磁石粉末、それを用いたボンド磁石用組成物、並びにボンド磁石を提供。
【解決手段】還元拡散法により、遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金からなる還元拡散反応生成物とする工程と、この還元拡散反応生成物を窒化炉に装入し、窒化用ガスを流通しながら加熱し、窒化処理して希土類−遷移金属−窒素系磁石粉末を得る製造方法において、前記希土類−遷移金属合金粉末を窒化する際、窒化用ガスが、窒化炉1に設けられた2箇所以上の供給口10から流通され窒化を均一に行う。 (もっと読む)


【課題】熱が伝わった際に安定的に反りが発生するアルミニウム−炭化珪素質複合体、及びこれからなる伝熱部材を提供する。
【解決手段】Al−SiC複合体1は、SiC多孔体にアルミニウムを主成分とする金属を含浸したものであり、50℃〜150℃における熱膨張係数が6ppm〜9ppm/Kである第1の層2と50℃〜150℃における熱膨張係数が層2よりも4ppm/K〜8.5ppm/Kだけ大きい第2の層3とを備える多層構造である。 (もっと読む)


【課題】高残留磁束密度、高保磁力の焼結磁石であるR−T−B−M系焼結磁石となるためのR−T−B−M系焼結磁石用合金を作製する。
【解決手段】焼結磁石全体に亘って結晶粒の主相外殻にDyの多いR14Bが存在するR−T−B−M系焼結磁石を作製できるように、R−T−B−M母合金1と重希土類元素RHの金属又は合金のRH拡散源2とを処理室3内にて連続的または断続的に移動させながら、雰囲気圧力10Pa以下600℃以上1000℃以下の熱処理を10分以上48時間以下行い、R−T−B−M系焼結磁石用合金の主相であるR214B化合物の結晶とそれ以外の相との界面部分に重希土類元素RHの濃度が高い領域を連続して生成する。 (もっと読む)


【課題】高品質なCu−Ga合金スパッタリングターゲットを作製する。
【解決手段】Cu粉末とGaとが質量比で85:15〜55:45の割合で配合された混合粉末が不活性雰囲気中で30℃以上400℃以下の温度で合金化されて得られたCu−Ga合金粉末1を真空又は不活性雰囲気中で400℃以上900℃以下の温度で熱処理した後に、加圧して焼結する。 (もっと読む)


【課題】浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置を提供すること。
【解決手段】軟磁性金属粉末21と、二酸化珪素粉末23によってコーティングされた二酸化珪素保持部材22とを加熱しながら接触させることにより、軟磁性金属粉末21と二酸化珪素粉末23の酸化還元反応を発生させ、二酸化珪素粉末23から離脱した珪素元素を軟磁性金属粉末21の表面に拡散浸透させて珪素浸透層を軟磁性金属粉末21の表面に形成する。 (もっと読む)


【課題】浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末の製造方法、その圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を用いた圧粉磁心、及び、圧粉磁心用粉末製造装置を提供すること。
【解決手段】所定量の軟磁性金属粉末21と所定量の二酸化珪素22を含む浸珪用粉末を炉2の内部で所定の処理時間加熱し、軟磁性金属粉末21の表面に珪素浸透層を形成することにより、圧粉磁心用粉末を製造する圧粉磁心用粉末の製造方法において、炉2を加熱しながら回転させた状態で、所定量の浸珪用粉末を時間軸に沿って分けて炉2に添加する。 (もっと読む)


【課題】保磁力を向上させ、磁石の使用温度の限界を向上させ、耐熱性の向上を図ることを可能とした高保磁力異方性磁石及びその製造方法を提供する。
【解決手段】磁石原料をHDDR法により微粉砕したHDDR粉末41に対して、M−(OR)(式中、MはDy、Tb、Hoの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を真空中又は不活性化ガス雰囲気下において600℃以上900℃未満で0.01分以上1時間未満保持することにより加熱処理を行う。更に、加熱処理された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】保磁力及び角型比の両方を十分に高い異方性希土類ボンド磁石の製造方法を提供すること。
【解決手段】本発明に係る異方性希土類ボンド磁石の製造方法は、第1の希土類元素を含む水素化分解・脱水素再結合法(HDDR法)による処理が施された磁性粉末、第1の希土類元素とは異なる第2の希土類元素を含む拡散材、及び、分散媒を含有するスラリーを調製するスラリー調製工程と、スラリーを磁場中成形して成形体を作製する成形工程と、成形体を加熱して第2の希土類元素を磁性粉末に拡散させる拡散熱処理工程と、拡散熱処理工程後の成形体に樹脂を含浸させる樹脂含浸工程と、成形体に含浸した樹脂を硬化させる硬化処理工程とを備える。 (もっと読む)


【課題】浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末製造方法及び圧粉磁心用粉末製造装置を提供すること。
【解決手段】圧粉磁心用粉末28を製造する圧粉磁心用粉末製造方法において、鉄粉24と二酸化珪素粉末22の混合粉23を、攪拌せずに、二酸化珪素粉末22から珪素元素が脱離して鉄粉24に拡散浸透するために必要な加熱時均熱温度に加熱した後、加熱された混合粉23を二酸化珪素粉末22が焼結しない冷却時均熱温度に冷却した状態で、混合粉23を攪拌する動作を、繰り返し行うことにより、鉄粉24の表層に珪素元素が拡散浸透した珪素浸透層25を形成する。 (もっと読む)


【課題】比抵抗が高い圧粉磁心用粉末、圧粉磁心用粉末を圧粉成形した圧粉磁心、及び、圧粉磁心用粉末の製造方法を提供すること。
【解決手段】軟磁性金属粉末2の表層に珪素が濃化した珪素浸透層3が形成された圧粉磁心用粉末1は、二酸化珪素粉末8が、一部を前記珪素浸透層3に浸透拡散させ、残りの部分を珪素浸透層3の表面から突出させた状態で、珪素浸透層3の表面に拡散接合されて、拡散接合体4となっており、圧粉成形時に拡散接合体4が他の圧粉磁心用粉末1との間に隙間Sを形成することにより、比抵抗を高めている。 (もっと読む)


【課題】大気圧下で浸珪処理をおこなった場合でも所望の珪素含有層を軟磁性金属粉末の表層に形成することができ、もって浸珪処理に要する時間を短縮しながら、高比抵抗な圧粉磁心を製造するための圧粉磁心用粉末を製造する方法を提供する。
【解決手段】炭素元素を含む軟磁性金属粉末の表面に浸珪処理をおこない、次いで徐酸化処理をおこなうことにより、圧粉磁心用粉末を製造する方法であり、この浸珪処理は、軟磁性金属粉末(Fe−C合金粉末1)の表面に少なくとも珪素化合物を含む浸珪用粉末を接触させ、該浸珪用粉末を加熱処理することによって珪素化合物から珪素元素を脱離させ、該脱離した珪素元素を軟磁性金属粉末の表層に浸透拡散させることで珪素含有層2を生成するものであり、この浸珪処理は、水素濃度が10〜50体積%の範囲の水素濃度雰囲気下で実施される方法である。 (もっと読む)


【課題】保磁力の高い永久磁石を製造することが可能な永久磁石用磁石粉末の製造方法、及び永久磁石粉末、並びに、優れた保磁力を有する永久磁石を提供する。
【解決手段】R−Fe−B系(Rは、Sc及びYを含む希土類元素から選ばれる1種以上である。)の組成を持ち内部に結晶粒界を持つ磁石粉末に対し、Sc及びYを含む希土類元素から選ばれる1種以上を含む金属を蒸着材又はターゲット材として用いて、蒸着又はスパッタリングを行い、その後熱処理を行い、永久磁石用磁石粉末を製造する。こうして得られた永久磁石用粉末を用いて永久磁石を得る。 (もっと読む)


【課題】重希土類元素を使用せずに優れた磁気特性と熱安定性と耐熱性とを併せ持つ希土類磁石を提供する。
【解決手段】本発明に係る希土類磁石は、希土類元素と遷移金属とを有する磁性体を含む無機結晶相を具備する希土類磁石であって、前記磁性体はその組成が化学式RxTyFz(R:希土類元素、T:遷移金属、F:フッ素、1.5≦ x ≦2.5、16.5≦ y ≦17.5、2.5≦ z ≦3.5)で表されるフッ化物結晶相からなり、前記希土類元素RはY、Ce、Pr、Nd、Smの中から選ばれる1種類以上であり、前記遷移金属TはFe、Coの中から選ばれる1種類以上であることを特徴とする。 (もっと読む)


1 - 20 / 58