説明

Fターム[4K018CA04]の内容

粉末冶金 (46,959) | 成型 (4,566) | 成型条件が特定されているもの (2,035) | 磁場中で行うもの (408)

Fターム[4K018CA04]に分類される特許

1 - 20 / 408


【課題】HDDR磁粉を用いて、希少な重希土類元素の使用を極力抑えつつ、高い保磁力をもったバルク状のR−T−B系永久磁石を製造する方法を提供する。
【解決手段】まずHDDR法によって作製されたR−T−B系HDDR磁石粉末を準備する。R’とAlからなり、かつ、Alが2原子%以上65原子%以下であるR’−Al系合金粉末を準備する。R−T−B系HDDR磁石粉末とR’−Al系合金粉末とを、R−T−B系HDDR磁石粉末に対するR’−Al系合金粉末の質量比が1/50以上1/10以下となるように混合して混合粉末を準備する。混合粉末を成形して圧粉体を準備する。この圧粉体をR’−Al系合金粉末の液相滲み出し境界温度T(TはR’−Al系合金の選択された組成における固相線温度から105℃低い温度)超、900℃以下の温度で熱間圧縮成形して熱間圧縮成形体を準備する。 (もっと読む)


【課題】高い磁気特性を維持し、かつ、重希土類元素の使用量を削減したR−T−B系焼結磁石を提供すること。
【解決手段】R−T−B系焼結磁石であって、主相粒子と粒界相を有し、前記主相粒子は、コア部とシェル部を含み、前記コア部の主相LR(2−x)HR14B(LR:Ndを必須とし、Y、La、Ce、Pr、Smの1種または2種以上を含む軽希土類元素、HR:Dyまたは/およびTbを必須とし、Gd、Ho、Er、Tm、Yb,Luの1種または2種以上を含む重希土類元素、T:Feまたは/およびCoを必須とし、Mn、Niの1種または2種を含む、B:(ホウ素、一部C(炭素)で置換されているものを含む))においてx=0.00〜0.07であり、前記シェル部の主相LR(2−x)HR14Bにおいてx=0.02〜0.40であり、かつ前記シェル部の最大厚みが7nm〜100nmであることを特徴とするR−T−B系焼結磁石。 (もっと読む)


【課題】重希土類元素を使用しない磁性材料の特性向上のため、軟磁性材料となるFeCo系粒子を改善したアルコール系溶媒、及びそれを用いて製造した焼結磁石を提供することが課題である。
【解決手段】FeCo系粒子とフッ化物溶液とを混合したスラリーは、アルコール溶媒中にFeCo系粒子が1〜50wt%、希土類フッ化物粒子を0.001〜10wt%含有し、FeCo系粒子の粒径が20〜200nm、希土類フッ化物粒子の粒径が1〜50nmである。本スラリーをNd2Fe14B系粉と混合し、磁場中で成形後に焼結して焼結磁石を製造する。 (もっと読む)


【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】高Fe濃度の組成域を主相とするSm−Co系磁石で大きな保磁力を再現性よく発現させることを可能にした永久磁石を提供する。
【解決手段】実施形態の永久磁石は、組成式:RpFeqrCusCo100-p-q-r-(Rは希土類元素から選ばれる少なくとも1種、MはZr、TiおよびHfから選ばれる少なくとも1種、10≦p≦13.5、28≦q≦40、0.88≦r≦7.2、4≦s≦13.5(原子%))で表される組成を有し、かつFe濃度が28モル%以上の組成域を主相とする。主相中のCu濃度は5モル%以上とされている。 (もっと読む)


【課題】Feを含むSm−Co系磁石の高い磁化や保磁力を保ちつつ、角型性を向上させた永久磁石を提供する。
【解決手段】実施形態の永久磁石は、組成式:R(FepqCur(Co1-p-q-rz(R:希土類元素、M:Ti、ZrおよびHfから選ばれる少なくとも1種、0.3<p≦0.45、0.01≦q≦0.05、0.01≦r≦0.1、5.6≦z≦9)で表される組成を有し、Th2Zn17型結晶相と粒界相とプレートレット相とを含む金属組織を備える。粒界相におけるCu濃度の空間分布は標準偏差で5以下とされている。 (もっと読む)


【課題】磁石特性に優れる希土類焼結磁石が得られる圧粉成形体を生産性よく製造できる磁石用圧粉成形体の製造方法、配向性に優れ、希土類焼結磁石の素材に好適な磁石用圧粉成形体、及び焼結体を提供する。
【解決手段】希土類合金からなり、粒径:2μm以下の微細粒子を15質量%以上含む原料粉末Pを成形用金型50に充填して加圧・圧縮すると共に、磁場を印加して、圧粉成形体を形成する。嵩密度の1.05〜1.2の充填密度である粉末成形体に1T〜2Tの弱磁場を印加した成形体10に、0.01T/sec以上0.15T/sec以下の励磁速度で3T以上に励磁して、3T以上の強磁場を高温超電導コイル60により印加する。常電導コイル70による磁場の印加方向と逆方向に高温超電導コイル60による磁場を印加すると共に高速励磁を行うことで、粗大な粒子と共に微細粒子を回転させて、配向性を高められる。 (もっと読む)


【課題】従来よりも磁気特性の高い磁石を実現する。
【解決手段】(a)軽元素の添加物を有する軽希土類元素と(b)鉄又はコバルトとで構成された軽希土類磁石を提供する。ここで、軽元素として、そのp軌道準位が鉄又はコバルトのd軌道準位より1eV以上深くなるものを使用する。 (もっと読む)


【課題】高周波領域で高いμ’と低いμ”を備え特性に優れた磁性材料を提供する。
【解決手段】実施の形態の磁性材料は、Fe、Co、Niからなる群から選ばれる少なくとも1つの磁性金属を含有し、粒径が1μm以上平均粒径が5μm以上50μm以下の複数の第1の磁性粒子と、Fe、Co、Niからなる群から選ばれる少なくとも1つの磁性金属を含有し、粒径が1μm未満平均粒径が5nm以上50nm以下の複数の第2の磁性粒子と、第1の磁性粒子および第2の磁性粒子間に存在する介在相と、を備える。 (もっと読む)


【課題】磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。 (もっと読む)


【課題】グリーンシートの厚み精度を向上させることにより、生産性の向上を可能とした希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより、バインダーを1wt%〜40wt%含む混合物を生成する。そして、生成した混合物を基材に高精度塗工することにより設定値に対して±5%以内の厚み精度を有するシート状のグリーンシートを作製する。その後、作製されたグリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートをSPS焼結等の加圧焼結により焼結を行うことによって永久磁石1を製造するように構成する。 (もっと読む)


【課題】磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ幅方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。 (もっと読む)


【課題】磁石特性の低下を防止することが可能となった希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末と脂肪酸メチルエステル或いは一定の条件を満たすモノマーの重合体又は共重合体或いはそれらの混合物からなるバインダーとを混合することにより混合物を生成する。そして、生成した混合物をシート状に成形し、グリーンシートを作製する。その後、作製されたグリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートを焼成温度に温度を上昇して焼結を行うことによって永久磁石1を製造するように構成する。 (もっと読む)


【課題】ボンド磁石を押出成形する方法において、ボンド磁石の配向率を向上させる。
【解決手段】異方性の磁性材料と樹脂とから構成されたボンド磁石組成物を溶融させた後、前方に押出す可塑化部3と、その可塑化部にて溶融されたボンド樹脂組成物の流れを制御するゲート部21と、上記磁性材料を配向させる磁場を印加する配向用磁石6が配置されるとともに、上記溶融されたボンド樹脂組成物を固化させるキャビティ19を有する成形部1と、を備えたボンド磁石の製造装置において、上記ゲート部21は、上記可塑化部3に接続された流路11,16が上記成形部1のほうに向かって分岐されてなる複数の流路と、それらの流路と上記キャビティ19とを接続する複数のゲートとを有しており、上記可塑化部で溶融されたボンド樹脂組成物が、上記複数の流路により複数の流れに分割された状態で、上記複数のゲートから上記成形部のキャビティ内に充填される。 (もっと読む)


【課題】HDDR処理を用いて希土類磁石を製造する際に、従来よりも高い磁化を実現できる製造方法を提供する。
【解決手段】RFe14B粉末を作成する工程;
上記RFe14B粉末に水素化分解処理を施してNdH、Fe、FeBの3相に分解する工程;
上記3相の粉末に別のRFe14B粉末を混合する工程;
得られた混合粉末を磁場中で圧粉成形する工程;
次いで加圧成形する工程;および
脱水素再結合処理を行なう工程
を含むことを特徴とする希土類磁石の製造方法。 (もっと読む)


【課題】磁化容易軸制御に必要な印加磁場を低減しつつ透磁率を向上させ、磁性粒子の酸化の影響を軽減して高性能化した磁気部品を提供する。
【解決手段】乾式法を用いてパラジウムを含む非磁性材料で磁性粒子を被覆する工程と、非磁性材料で被覆された磁性粒子を、回転磁場、加熱、および振動下でプレスする工程とを含む磁気部品の製造方法である。パラジウムを含む非磁性材料で被覆された磁性粒子を含み、周波数100kHz時の透磁率が150を超えて200以下であり、印加磁場800kA/m時の飽和磁束密度が2.20Tを超えて2.45T以下である、磁気部品である。 (もっと読む)


【課題】磁気特性に優れ、磁石の素材に適した複合磁性材、及びその製造方法を提供する。
【解決手段】ナノ鉄粉と、希土類元素の水素化合物と鉄含有物とを含有する多相粉末と、バインダとを混合してなる造粒粉を加圧成形する。加圧成形は、0.9気圧以下に排気しながら、バインダの分解温度±20℃の温度で行う。得られた第一成形体に、減圧雰囲気中、再結合温度以上で熱処理(脱水素)して、多相粉末から希土類元素とFeとを含有する再結合合金を生成し、得られた第二成形体に、窒素雰囲気中、200℃〜450℃で熱処理(窒化)して、ナノ鉄粉からα"Fe16N2を、再結合合金から希土類-鉄-窒素系合金を生成する。熱処理はいずれも、強磁場を印加して行う。窒化処理時に磁場を印加してα"Fe16N2を生成すると共に、希土類-鉄-窒素系合金とα"Fe16N2との磁気容易軸の配向方向を共通させる。 (もっと読む)


【解決手段】組成Ra1bcd(Rは希土類元素、T1はFe又はCo、MはAl等、Bはほう素、a〜dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部)からなる焼結磁石体に対し、M1d2e(M1、M2はAl等、d、eは原子百分率を示し、0.1≦e≦99.9、dは残部)からなり、金属間化合物相を70体積%以上含む合金の粉末と、R1の酸化物(R1は希土類元素)を含有した混合粉体を焼結磁石体の表面に存在させた状態で、焼結磁石体の焼結温度以下の温度で熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部や焼結磁石体主相粒内の粒界部近傍に拡散させる希土類永久磁石の製造方法。
【効果】より多量のDyやTb等の希土類元素を粒界部を経路として磁石内の主相粒の界面近傍に導入することが可能で、残留磁束密度の低下を抑制しつつ保磁力を増大できる。 (もっと読む)


【課題】磁気特性に優れる希土類磁石が得られる希土類-鉄-窒素系合金材及びその製造方法、上記希土類磁石の原料に適した希土類-鉄系合金材及びその製造方法を提供する。
【解決手段】希土類-鉄系合金粉末を水素含有雰囲気で熱処理して、鉄含有物の相2中に希土類元素の水素化合物の相3が離散して存在する多相粉末1を作製する。多相粉末1を圧縮成形して得られた粉末成形体4を真空中、3T以上の磁場を印加した状態で熱処理して、希土類-鉄系合金材5を形成する。希土類-鉄系合金材5を窒素雰囲気中、3.5T以上の磁場を印加した状態で熱処理して、希土類-鉄-窒素系合金材6を形成する。希土類-鉄系合金材5は、希土類-鉄系合金の結晶がc軸方向に配向した組織を有する。この配向組織の希土類-鉄系合金材5に磁場を印加した状態で窒化することで、希土類-鉄-窒素系合金材6は、理想的な窒化物により構成され、磁気特性に優れる希土類磁石7が得られる。 (もっと読む)


1 - 20 / 408