説明

Fターム[4K018EA21]の内容

粉末冶金 (46,959) | 成型と焼結を同時に、交互に行うもの (1,683) | 粉末間放電、通電焼結 (279)

Fターム[4K018EA21]の下位に属するFターム

Fターム[4K018EA21]に分類される特許

1 - 20 / 182


【課題】DyやTbの使用量を低減するか又はこれらの重希土類元素を使用することなしに、高い保磁力を有するNd−Fe−B系磁石を製造するための方法を提供する。
【解決手段】アモルファス組織を有するNd−Fe−B系磁石原料を用意する工程、及び前記Nd−Fe−B系磁石原料を525℃以上600℃以下の温度及び50MPa以上300MPa以下の圧力において熱処理する熱処理工程を含むことを特徴とするNd−Fe−B系磁石の製造方法が提供される。 (もっと読む)


【課題】第1のニッケル基金属間化合物を含む初析相と、第1のニッケル基金属間化合物と第2のニッケル基金属間化合物とを含む共析相と、を含んで成る2重複相組織を有し、かつ得られた2重複相組織が均一で高い強度を有する材料を提供する。また同材料をより優れた寸法精度で製造できる方法を提供する。
【解決手段】60at%以上のニッケルと、5at%〜13at%のアルミニウムと、9.5at%〜17.5at%のバナジウムと、0at%〜5at%のニオブとを含有し、L1型の結晶構造を有する第1のニッケル基金属間化合物を含む初析相と、前記第1のニッケル基金属間化合物とD022型の結晶構造を有する第2のニッケル基金属間化合物を含む共析相と、を含んで成り、平均結晶粒径が50μm以下であることを特徴とするニッケル基金属間化合物焼結体である。また本材料は粉末冶金法により製造する。 (もっと読む)


【課題】配向度が高く、もって残留磁化の高い希土類磁石に資する焼結体と、この焼結体を形成する磁性粉末の製造方法を提供する。
【解決手段】ナノ結晶組織のNd-Fe-B系の主相である結晶粒g2と、該主相の周りにある粒界相からなる焼結体Sであって、該焼結体Sに異方性を与える熱間塑性加工が施され、さらに保磁力を向上させる合金が拡散されて形成される希土類磁石の前駆体である焼結体において、焼結体Sを構成する結晶粒g2は、容易磁化方向(c軸方向)に直交する方向から見た結晶粒g2の平面形状がc軸方向の辺とこれに直交する方向(a軸方向)の辺からなる長方形もしくはこれに近似した形状となっている。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】湿式粉砕の粉砕性を向上させることにより、磁気性能を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末と一般式M−(OR)x(式中、MはNd、Al、Cu、Ag、Dy、Tb、V、Mo、Zr、Ta、Ti、W、Nbの内、少なくとも一種を含む。Rは炭素鎖長が2〜16の炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物とを有機溶媒中で湿式粉砕することにより、磁石原料を粉砕して磁石粉末を得るとともに該磁石粉末の粒子表面に有機金属化合物を付着させる。その後、有機金属化合物を付着させた磁石粉末を成形して焼結を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】 割れ等の発生を抑制できる磁気冷凍材料および磁気冷凍材料の製造方法を提供する。
【解決手段】 214μm以下に微粉化した磁気冷凍材料薄片13を放電プラズマ焼結(SPS)により加圧および加熱し、バルク形状の磁気冷凍材料17を成型した。焼結の工程において、材料に加える面圧は約42MPaとし、焼結温度は1100℃とした。焼結後の磁気冷凍材料の充填率は95%、α‐Feは、2wt%となった。このような磁気冷凍材料は、加工時に砕けたりすることがなく所望の形状となり、また、水素吸蔵時の割れの発生が抑制される。 (もっと読む)


【課題】炭化タングステン−遷移金属−カーボンナノチューブ系の超硬合金において、添加されたカーボンナノチューブのすべてがグラフェンに変化してしまうことが抑えられ、高い破壊靱性値及び硬度を有する超硬合金及びその製造方法を提供する。
【解決手段】炭化タングステン−コバルト−カーボンナノチューブ系の超硬合金は、炭化タングステン粉末に対して、結合剤としてのコバルト粉末(15重量%未満)、補強材料としてのカーボンナノチューブ(0.067重量%以下)を添加した原料粉末を固相焼結して得られる。炭化タングステンWC粒子の粒界には、コバルトCo粒子(例えばWC−Co系固溶体含む)と、カーボンナノチューブCNTとグラフェンとが存在している。つまり、原料のカーボンナノチューブは、焼結によって一部がグラフェンに変化し、炭化タングステンWC粒子の粒界には、カーボンナノチューブCNTとグラフェンとが共存している。 (もっと読む)


【課題】アトマイズ法を用いた熱電変換材料の製造方法において、熱電変換材料の安定的な製造を可能とする。
【解決手段】熱電変換材料の製造方法は、坩堝10内に保持された金属原料を加熱し、溶融する工程と、金属原料を溶融する上記工程における温度から、金属原料を昇温する工程と、坩堝10内に保持されている溶融した金属材料を、ガスアトマイズ法を用いて噴射室12へ噴霧し、合金粉末を生成する工程と、合金粉末を焼結して熱電変換材料を形成する工程と、を備える。 (もっと読む)


【課題】溶着引き外しが容易な接点材料とその製造方法を得る。
【解決手段】CuとCrとTeからなる接点材料において、Cuを主体とした母材中にCr粒子、Te−Cu−Cr相とCu−Te相とが混在したCu−Cr−Te粒子、Cr−Te粒子が分散し、且つ母材とCr粒子との粒界にTe含有相を形成し、Cr含有量が40質量%以上50質量%以下、Te含有量が0.1質量%以上2.0質量%以下で、残部がCuである。製造方法は、混合粉末を焼結型に充填し、温度700℃以上1080℃以下、圧力30MPa以上200MPa以下でパルス通電加圧焼結を行う。 (もっと読む)


【課題】グリーンシートの厚み精度を向上させることにより、生産性の向上を可能とした希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより、バインダーを1wt%〜40wt%含む混合物を生成する。そして、生成した混合物を基材に高精度塗工することにより設定値に対して±5%以内の厚み精度を有するシート状のグリーンシートを作製する。その後、作製されたグリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートをSPS焼結等の加圧焼結により焼結を行うことによって永久磁石1を製造するように構成する。 (もっと読む)


【課題】磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。 (もっと読む)


【課題】ネットシェイプ性を向上させて製造工程の簡略化及び生産性の向上を可能とした希土類永久磁石及び希土類永久磁石の製造方法を提供する。
【解決手段】磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物をシート状に成形し、グリーンシートを作製する。その後、作製されたグリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートをSPS焼結等の加圧焼結により焼結を行うことによって永久磁石1を製造するように構成する。 (もっと読む)


【課題】溶成工程や粉砕成型工程を経ることなく高純度のマグネシウムシリコン合金および製造方法を提供すること。
【解決手段】粒径が500μm以下のマグネシウム粉と粒径が100μm以下のシリコン粉を所定比で焼結型内に充填し、この粉末を所定圧力以上に加圧しながら所定温度で加熱して焼結するマグネシウムシリコン合金の製造方法および、この製造方法によって得られた品質が良好で且つ緻密なマグネシウムシリサイド(Mg2Si)である。 (もっと読む)


【課題】溶成工程や粉砕混合工程を経ることなくβ鉄シリサイドや半導体などに変換可能な高純度の鉄シリコン合金の製造方法を提供する。
【解決手段】粒径が10μm以下の鉄粉と粒径が10μm以下のシリコン粉を焼結型内に充填し、この粉末をパルス通電焼結法で加圧しながら直流パルス通電することにより、プラズマ放電が発生し電界作用でイオンの移動が高速となって粉末中にある酸化物や吸着ガスの除去が効果的に行われ、αFeSi2を主成分とした品質が良好で且つ緻密な焼結体が得られる。 (もっと読む)


【課題】高価な元素や物質を添加せずに、高い延性を著しく低下させることなく、高強度を発現するチタン材料を提供する。
【解決手段】チタン材料は、a軸方向およびc軸方向に原子を配列した稠密六方格子の結晶構造を有する。チタン中に4000ppm以上の酸素原子が固溶している。c軸方向での格子定数とa軸方向での格子定数との比である軸比c/aの値は、1.589〜1.593の範囲内にある。 (もっと読む)


【課題】高磁化残留と高保磁力を兼ね備えたNdFeB磁石の製法を提供すること。
【解決手段】NdFe14B相を含んでなる磁性組織に非磁性相を接触させる工程、
前記非磁性相をその融点以上の温度まで加熱する工程、および
前記非磁性相を前記磁性組織に粒界拡散させる工程を含んでなり、
ここで前記NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmのナノ結晶粒子である、
磁石の製造方法。 (もっと読む)


【課題】複数のターゲットを用いることなく、炭素含有量の多いFePtC系薄膜を単独で形成できるFePt−C系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】Fe、PtおよびCを含有するFePt−C系スパッタリングターゲットであって、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金相と、C相とが互いに分散した構造を有するようにし、ターゲット全体に対するCの含有量を21〜70at%にする。
また、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金粉末にC粉末を添加し、酸素の存在する雰囲気下で混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形する。 (もっと読む)


【課題】Ruターゲットの代替として用いることができるRu−Pd系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】RuとPdを主要成分として含有するRu−Pd系スパッタリングターゲットであって、Ruを1〜40at%含有して残部がPdおよび不可避的不純物からなるRu−Pd合金相と、不可避的不純物を含むRu相とが互いに分散した構造を有するようにする。
また、Ruを1〜40at%含有し、残部がPdおよび不可避的不純物からなるRu−Pd合金粉末をアトマイズ法で作製し、作製した該Ru−Pd合金粉末に、粉末全体に対するPdの含有量が1〜50at%となるように不可避的不純物を含むRu粉末を混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形して、Ru−Pd系スパッタリングターゲットを製造する。 (もっと読む)


【課題】金属等の酸化しやすい物質と接触させた場合に、前記酸化しやすい物質の酸化を抑制できる酸化鉄ナノ粒子分散液を提供すること。
【解決手段】酸化鉄粒子分散液は、1次粒子径が100nm以下で、2次粒子径が500nm以下である酸化鉄粒子と、エステル基と、スルホキシド基との少なくとも一方を有する極性溶媒を用いて前記酸化鉄粒子を分散させる分散液と、を含む。酸化鉄粒子は、ε−Feと、γ−Feと、α−Feと、Feとから選択されることが好ましい。 (もっと読む)


【課題】熱電材料を構成する元素のいずれもが地球上に存在する割合の多い元素であり、軽量、無毒な従来のp型熱電材料より高性能のp型熱電材料を提供する。
【解決手段】p型熱電材料は、CaMgSiの結晶構造を有し、かつ単相であり、化学組成は原子%でSiが33.3%で一定、Caが33.3±x%であり、Mgが残りの量を含有する。但し、0≦x≦2である。Ca、Mg及びSiはいずれもが地球上に存在する割合の多い元素である。p型熱電材料は、Ca、Mg及びSiの割合が原子%で表した組成割合となるように、Ca原料、Mg原料及びSi原料の粉末を所定の割合で混合し、メカニカルアロイング処理を施した後、焼結することにより製造される。 (もっと読む)


1 - 20 / 182