説明

Fターム[4K018FA11]の内容

粉末冶金 (46,959) | 後処理 (2,168) | 拡散、浸透処理 (137)

Fターム[4K018FA11]の下位に属するFターム

Fターム[4K018FA11]に分類される特許

1 - 20 / 118


【課題】磁気特性及び生産性に優れる磁性部材、及びその製造方法を提供する。
【解決手段】軟磁性金属粉末20と、希土類元素の水素化合物の相とFe含有物の相とが存在する多相粒子から構成される多相粉末30とを成形用金型100Aに供給して両粉末10,20を同時に加圧圧縮して、粉末成形体10Aを形成する。粉末成形体10Aに熱処理を施して、多相粒子から水素を分離し、希土類元素とFe含有物とが結合した再結合合金を生成する。この工程により、軟磁性領域2Aと、再結合合金(希土類元素とFeとを含有する合金)から構成される磁石領域3Aとを具える磁性部材1Aを形成する。両粉末10,20を同時に成形することで工程数が少なく、生産性に優れる。磁性部材1Aは、軟磁性部材と磁石とを別部材にする場合に生じ得る微小なギャップが無く、当該ギャップに起因する磁気特性の低下を抑制して、磁気特性に優れる。 (もっと読む)


【課題】従来の希土類磁石の製造方法に比して低温で保磁力(特に高温雰囲気下における保磁力)を高める改質合金を浸透させることができ、もって、保磁力が高く、磁化も比較的高い希土類磁石を製造することのできる製造方法を提供する。
【解決手段】ナノ結晶組織のRE-Fe-B系(RE:Nd、Prの少なくとも一種)の主相MPと、主相MPの周りにあるRE-X合金(X:金属元素)の粒界相BPからなる焼結体Sに対し、異方性を与える熱間塑性加工を施して成形体Cを製造する第1のステップ、成形体Cの保磁力を高めるRE-Y-Z合金(Y:遷移金属元素、Z:重希土類元素)と粒界相BPをともに溶融させ、RE-Y-Z合金の融液を成形体Cの表面から液相浸透させて希土類磁石RMを製造する第2のステップからなる希土類磁石の製造方法である。 (もっと読む)


【課題】生産性向上、省力化、品質向上、消耗品低減が達成された焼結品の処理方法を提供する。
【解決手段】焼結品に対して水蒸気処理を行い、次いでガス軟窒化処理を施す焼結品の処理方法であって、焼結品を収容する処理容器および/または焼結品を支持する治具として、表面にアルミニウム拡散被覆層が形成された処理容器および/または治具を用いるとともに、前記水蒸気処理の後に、処理容器および/または治具を交換することなく、前記ガス軟窒化処理を行うことを特徴とする、焼結品の処理方法。 (もっと読む)


【課題】ニッケル高含有量の焼結部品と同程度の強度を有する焼結部品を安価に製造することができる焼結部品の製造方法を提供する。
【解決手段】成形用金型内に、少なくともニッケル粉体とモリブデン粉体と鉄粉体との単純混合により得られ、かつニッケル0.5〜3.5質量%、モリブデン0.3〜0.7質量%および残部鉄を含有する混合物を含有する原料粉体を充填した後、当該原料粉体を加圧して成形し、得られた成形体を1200〜1350℃の焼結温度で焼結する。 (もっと読む)


【課題】比較的低い熱処理温度においてもBrが十分に高く、優れたHcJを有する磁石を得ることができる磁石の製造方法を提供すること。
【解決手段】
本発明の磁石の製造方法は、希土類磁石の焼結体に、重希土類元素としてDy又はTbを含む重希土類化合物を付着させる第1工程と、重希土類化合物が付着した焼結体を熱処理する第2工程とを有し、重希土類化合物は、DyFe、TbFe、DyFeH、TbFeH、DyNdFe又はDyNdFeHであり、第1工程において、焼結体に、重希土類化合物が溶媒に分散されたスラリーを塗布する、ことを特徴とする。 (もっと読む)


【課題】低バインダー相の含有量と微細なWC粒径を有する表面領域とすなわち大きな耐摩擦性を備える超硬合金及びその製造方法を提供する。
【解決手段】Co及びNiからなる少なくとも1種のバインダー相中の硬質構成物、少なくとも一つの表面部分、及び内側部分を含み、表面部分の粒径は内側部分の粒径より小さい、採鉱用及び構造物用の超硬合金工具ボディであって、
微細な粒径を有する表面部分が、内側部分より少ないバインダー相含有量を有し、
表面部分の因子A=((wt%Cr/wt%バインダー相)+0.01)と、超硬合金工具ボディの最も少ないCr含有量によって特徴つけられる部分で採取した因子B=((wt%Cr/wt%バインダー相)+0.01)との比率A/Bが1.5以上であるようにCrを含有し、
微細な粒径の表面部分と粗い粒径の内側部分の間のCo含有量が最大である超硬合金工具ボディ。 (もっと読む)


【課題】溶成工程や粉砕混合工程を経ることなくβ鉄シリサイドや半導体などに変換可能な高純度の鉄シリコン合金の製造方法を提供する。
【解決手段】粒径が10μm以下の鉄粉と粒径が10μm以下のシリコン粉を焼結型内に充填し、この粉末をパルス通電焼結法で加圧しながら直流パルス通電することにより、プラズマ放電が発生し電界作用でイオンの移動が高速となって粉末中にある酸化物や吸着ガスの除去が効果的に行われ、αFeSi2を主成分とした品質が良好で且つ緻密な焼結体が得られる。 (もっと読む)


【課題】R−T−B系焼結磁石と保持部材とが溶着せずに一回あたりの処理量を増加させ、生産効率を向上させるとともに、不純物ガスによるR−T−B系焼結磁石の磁気特性低下や重希土類元素RHの拡散によるR−T−B系焼結磁石の磁気特性向上効果が阻害されることを防止する、R−T−B系焼結磁石の製造方法の提供。
【解決手段】RH拡散源とR−T−B系焼結磁石体とを保持部材を介して交互に積層し、積層体を構成する工程と、前記積層体を処理容器内に配置する工程と、前記処理容器内の少なくとも一箇所にゲッターを配置する工程と、前記処理容器内を0.1Pa以上50Pa以下、800℃以上950℃以下の雰囲気にしてRH供給拡散処理を行う工程と、を含む。 (もっと読む)


【課題】高強度な浸炭焼結体を効率的に製造できる浸炭焼結体の製造方法を提供する。
【解決手段】本発明の浸炭焼結体の製造方法は、Fe、Mn、SiおよびCの合金または化合物からなるFe−Mn−Si−C粉末を鉄合金粉末に加えた原料粉末を、加圧成形して成形体を得る成形工程と、この成形体を浸炭温度が850〜980℃の浸炭雰囲気中で加熱することにより、表面近傍に浸炭層が形成された焼結体である浸炭焼結体を得る浸炭工程と、を備えることを特徴とする。Fe−Mn−Si−C粉末が鉄合金粉末の粒子表面を還元して活性化することにより、浸炭工程中に鉄合金粉末の粒子間にいわゆる焼結ネックが形成される。このため焼結工程を行わずに、成形体の焼結化と浸炭層の形成の両方が浸炭工程によりなされる。こうして本発明の製造方法によれば、高強度な浸炭焼結体を効率的に低コストで製造することが可能となる。 (もっと読む)


【課題】残留磁束密度の低減を抑制しながら保磁力を増大させる。
【解決手段】組成Ra1bcd(Rは希土類元素、T1はFe又はCo、MはAl等、Bはほう素、a、b、c、dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部)からなる焼結磁石体に対し、組成R1i1j、R1i1jk又はR1x2y1z(R1は希土類元素、M1はAl等、T2はFe及び/又はCo、15<j≦99、k≧0.1、5≦x≦85、15<z≦95、i、yは残部)からなり、かつ金属間化合物相を70体積%以上含む合金粉末とR2の酸化物(R2は希土類元素)を含有した混合粉体を上記焼結磁石体の表面に存在させた状態で、熱処理を施すことにより、R1、R2、T2、M1の1種又は2種以上の元素を当該焼結磁石体の内部の粒界部、及び/又は、焼結磁石体主相粒内の粒界部近傍に拡散させる。 (もっと読む)


【解決手段】組成Ra1bcd(Rは希土類元素、T1はFe又はCo、MはAl等、Bはほう素、a〜dは原子百分率を示し、12≦a≦20、0≦c≦10、4.0≦d≦7.0、bは残部)からなる焼結磁石体に対し、M1d2e(M1、M2はAl等、d、eは原子百分率を示し、0.1≦e≦99.9、dは残部)からなり、金属間化合物相を70体積%以上含む合金の粉末と、R1の酸化物(R1は希土類元素)を含有した混合粉体を焼結磁石体の表面に存在させた状態で、焼結磁石体の焼結温度以下の温度で熱処理を施すことにより、R1、M1、M2の1種又は2種以上の元素を上記焼結磁石体の内部の粒界部や焼結磁石体主相粒内の粒界部近傍に拡散させる希土類永久磁石の製造方法。
【効果】より多量のDyやTb等の希土類元素を粒界部を経路として磁石内の主相粒の界面近傍に導入することが可能で、残留磁束密度の低下を抑制しつつ保磁力を増大できる。 (もっと読む)


【課題】R−T−B系焼結磁石内部に重希土類元素RHが効率よく拡散され、所定の磁気特性を得る磁石の製造方法を提供する。
【解決手段】R−T−B系焼結磁石の製造方法は、R−T−B系焼結磁石素材を準備する工程と、重希土類元素RH(RHはDyおよびTbの少なくとも一種を含む)と40質量%以上95質量%以下のFeとからなるRH−Fe合金と、軽希土類元素RL(Nd、Pr、Ce、Laの少なくとも一種を含む)を含むRL金属と、からなり、総希土類量が65質量%以上、軽希土類元素RLが20質量%以上70質量%以下、重希土類元素RHが50質量%以下、である粉末状の拡散材を準備する工程と、前記R−T−B系焼結磁石素材に対し、前記拡散材を前記R−T−B系焼結磁石素材の表面に存在させた状態で、800℃以上1000℃以下の温度で真空または不活性ガス中においてRH拡散処理する工程と、を包含する。 (もっと読む)


【課題】高磁化残留と高保磁力を兼ね備えたNdFeB磁石の製法を提供すること。
【解決手段】NdFe14B相を含んでなる磁性組織に非磁性相を接触させる工程、
前記非磁性相をその融点以上の温度まで加熱する工程、および
前記非磁性相を前記磁性組織に粒界拡散させる工程を含んでなり、
ここで前記NdFe14B相を含んでなる磁性組織の少なくとも一部は、粒子径が10〜300nmのナノ結晶粒子である、
磁石の製造方法。 (もっと読む)


【課題】R−T−B系焼結磁石と支持体との溶着の発生を減少させるとともに、RH供給源からR−T−B系焼結磁石体へ重希土類元素RHの供給を効率よくすることができる、R−T−B系焼結磁石の製造方法を提供すること。
【解決手段】RH供給源とR−T−B系焼結磁石体との間に特定形状のスペーサを介在させて上下方向に多段配置する。これにより、従来用いられている網などの支持体と比べて、R−T−B系焼結磁石との溶着の発生を大幅に減少させることができる。また、RH供給源やR−T−B系焼結磁石体との接触面積が小さいため、RH供給源からR−T−B系焼結磁石体へ重希土類元素RHの供給を効率よくすることができ、重希土類元素RHの歩留まりを向上させることができる。 (もっと読む)


【課題】希土類焼結磁石の磁気特性を向上させることができる希土類焼結磁石の製造方法を提供する。
【解決手段】発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを含む希土類焼結磁石を製造するにあたり、R214B相の組成を含む希土類焼結磁石体の表面に、重希土類化合物を含む希土類化合物含有液を付着させる重希土類化合物の付着工程と、前記重希土類化合物が付着した希土類焼結磁石体を熱処理する熱処理工程と、を有し、熱処理した希土類焼結磁石体の角形比Hk/HcJは、熱処理して角形比Hk/HcJが一番高くなる焼結条件において得られる希土類焼結磁石体の角形比Hk/HcJの0.8以上1.0未満であることを特徴とする。 (もっと読む)


【課題】HDDR磁粉を用い、重希土類元素の使用を抑えつつ、高い保磁力をもったR−T−B系永久磁石の製造方法を提供する。
【解決手段】HDDR法によるR−T−B系粉末(Rは、Nd及び/又はPrをR全体に対して95原子%以上含む希土類元素、TはFe又はFeの一部をCo及び/又はNiで置換した、Feを50原子%以上含む遷移金属元素)と、R’(Nd及び/又はPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)と25原子%以上65原子%以下のAlからなるR’−Al系合金粉末とを準備する。R−T−B系粉末に対するR’−Al系粉末の質量比を1/10以下とした混合粉末を、R214B相のキュリー点以下の温度で成形した圧粉体を550℃以上R’−Al系合金粉末の液相滲み出し開始温度Tp以下で熱間圧縮成形し、不活性雰囲気または真空中において550℃以上900℃以下の温度で熱処理する。 (もっと読む)


【課題】Dy等の拡散元素を表面部から内部まで効率的に拡散させることができる希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、希土類合金粒子の成形体または焼結体からなる磁石材の表面部に内部へ拡散し得る拡散元素を付着させる付着工程と、磁石材を真空中で加熱して磁石材の表面部に滞留した拡散元素の少なくとも一部を蒸発させる蒸発工程と、を備えることを特徴とする。付着工程は蒸着工程であり、蒸発工程は蒸着工程に続けて磁石材だけを真空中で加熱する加熱工程であると好ましい。この製造方法によれば、稀少なDy等の使用量を抑制しつつ、希土類磁石の保磁力の向上を図ることができる。換言すると、本発明により保磁力効率が著しく大きい希土類磁石が得られる。 (もっと読む)


【課題】磁石保磁力を高めながら材料コスト低減を図ることができ、粒界拡散過程における熱エネルギを少なくして製造コスト低減も図ることのできるネオジム磁石の製造方法と、この方法によって製造されたネオジム磁石を提供する。
【解決手段】主相Sと粒界相Rからなる金属組織を有するネオジム磁石Mと、ネオジムと非希土類金属からなるネオジム合金G’を減圧雰囲気下で熱処理し、該粒界相R内にネオジム合金Gを気相拡散させるネオジム磁石の製造方法である。 (もっと読む)


【課題】R−T−B系焼結磁石体へのRH拡散の条件が変わっても拡散量が変動することなく安定してR−T−B系焼結磁石を製造する。
【解決手段】焼結磁石の製造方法は、R−T−B系焼結磁石体を準備する工程と、ジルコニア、アルミナ、イットリア、窒化ケイ素、炭化ケイ素、窒化硼素若しくはこれらの混合物のセラミックスまたはMo、Nb、W、Taのいずれかの1種の金属若しくはこれらの合金のいずれかからなる基材に重希土類元素RH(DyおよびTbの少なくとも一方)を含む金属または合金を被覆したRH拡散源を準備する工程と、前記R−T−B系焼結磁石体および前記RH拡散源を処理室内に装入・配置する工程と、前記R−T−B系焼結磁石体および前記RH拡散源を700℃から1000℃に加熱するRH拡散工程とを包含する。 (もっと読む)


【課題】磁石の中心部まで重希土類元素RHを導入するR−T−B系焼結磁石の製造方法を提供する。
【解決手段】R−T−B系焼結磁石の製造方法において、磁石素材と重希土類元素RH(DyおよびTbの少なくとも1種)の金属または合金からなるRH拡散源とを相対的に移動可能かつ近接または接触可能に処理室内に投入する工程、磁石素材とRH拡散源とを処理室内で連続的または断続的に移動させながら800℃以上1000℃以下の熱処理を10分以上行うRH拡散工程をした後、作製した磁石中間体に表面加工を行ってから再度RH拡散工程を行う。 (もっと読む)


1 - 20 / 118