説明

Fターム[4K020AA22]の内容

複合金属又は合金の製造 (2,577) | 分散材の形状・材質 (668) | 繊維以外の分散材 (350) | 硬質材料 (187)

Fターム[4K020AA22]に分類される特許

61 - 80 / 187


【課題】気孔率が小さく、放熱部材に適した熱特性を有するマグネシウム基複合材料、及びその製造方法を提供する。
【解決手段】このマグネシウム基複合材料は、マグネシウム又はマグネシウム合金からなる母材にSiCが分散したものであり、この複合材料中の気孔率が3%未満である。この複合材料は、原料のSiCを加熱して、その表面に酸化膜を形成する酸化処理工程と、酸化膜が形成された被覆SiCを成形型に配置して、この被覆SiCの集合体に、675℃以上1000℃以下の温度で溶融マグネシウム又は溶融マグネシウム合金を含浸させる含浸工程とを具える製造方法により製造することができる。上記酸化処理において酸化膜は、加熱温度を700℃以上とし、原料のSiCに対する質量割合が0.4%以上1.5%以下を満たすように形成する。 (もっと読む)


銅またはアルミニウムなどの金属と炭化ケイ素チタンまたは炭化アルミニウムチタンセラミック材料との高密度化された複合材料は、前記セラミック材料から物体を形成し、該物体に溶融金属を浸潤させることによって調製される。前記金属は、粒界間の隙間内、およびさらには前記セラミック粒体の結晶構造内にも迅速に浸透して、複合材料を形成することができる。出発セラミック材料は、予め高密度化されていてよく、この場合、種々のタイプの勾配構造が容易に生成され得る。このプロセスは、低圧で操作することができ、そのため、これらのセラミック材料を高密度化するのに通常は用いなければならないホットプレス法を回避できる。
(もっと読む)


【課題】アルミニウム合金中の元素含有量を正確に調整でき、強度、耐摩耗性、高温特性の改善を図った粒子強化アルミニウム複合材料の製造方法を提供する。
【解決手段】粒径5μm以上かつ密度3g/cm3以上のアルミナ、スピネル、炭化ケイ素のうち少なくとも1つのセラミックス粒子を、撹拌法で溶解炉内の溶湯アルミニウム合金に添加して分散させた後、700〜800℃の温度で10min以上撹拌を停止して添加したセラミックス粒子を溶解炉の下部に沈殿させ、溶解炉の下部に複合溶湯を形成すると共に、上部に合金溶湯を形成し、その合金溶湯の一部を取り出して凝固し、これを発光分析して上記合金溶湯の元素組成を決定し、決定した元素組成に基づき、セラミックス粒子を添加した溶湯アルミニウム合金中の元素含有量を調整する粒子強化アルミニウム複合材料の製造方法である。 (もっと読む)


【課題】強度、耐摩耗性、高温特性の改善を図ったセラミックス粒子強化アルミニウム複合材料の製造方法を提供する。
【解決手段】アルミナ、スピネル、炭化ケイ素のうち少なくとも1つのセラミックス粒子と、半金属のSi粒子と、Cu粒子、Ni粒子、Fe粒子、Zn粒子、Mn粒子、Ti粒子、Cr粒子のうち少なくとも1つの金属粒子とを予混合して混合粒子を作製した後、撹拌法でその混合粒子を溶湯アルミニウムまたは溶湯アルミニウム合金に分散させることを特徴とするセラミックス粒子強化アルミニウム複合材料の製造方法である。 (もっと読む)


【課題】パワーモジュール用ベース板として好適なアルミニウム−炭化珪素質複合体を提供すること。
【解決手段】アルミニウム77〜94.5質量%、珪素5〜20質量%及びマグネシウム0.5〜3質量%を含有する金属粉末15〜40体積%、平均粒子径0.5〜30μmの炭化珪素粉末20〜60体積%、並びに、平均粒子径1〜1000μmのコークス系炭素を黒鉛化した黒鉛粉末20〜60体積%を混合した後、離型処理を施した金型に充填し、温度600〜750℃に加熱して、圧力10MPa以上で加熱プレス成形し、さらに切断及び/又は面加工を行って板厚を2〜6mmにすることを特徴とする、板状アルミニウム−炭化珪素質複合体の製造方法。 (もっと読む)


【課題】パワーモジュール用ベース板として好適なアルミニウム−炭化珪素質複合体を提供すること。
【解決手段】アルミニウムを77〜94.5質量%、珪素を5〜20質量%及びマグネシウムを0.5〜3質量%を含有する金属粉末15〜40体積%、平均粒子径0.5〜30μmの炭化珪素粉末10〜50体積%、平均粒子径1〜30μmで結晶化度(GI値)が3以下の窒化硼素粉末5〜35体積%、並びに、平均粒子径が1〜1000μmのコークス系炭素を黒鉛化した黒鉛粉末5〜35体積%を混合した後、離型処理を施した金型に充填し、温度600〜750℃に加熱して、圧力10MPa以上で加熱プレス成形し、さらに切断及び/又は面加工を行って板厚を2〜6mmとすることを特徴とする、板状アルミニウム−炭化珪素質複合体の製造方法。 (もっと読む)


【課題】パワーモジュール用ベース板として好適なアルミニウム−炭化珪素質複合体を提供すること。
【解決手段】アルミニウム77〜94.5質量%、珪素5〜20質量%及びマグネシウム0.5〜3質量%を含有する金属粉末20〜40体積%と、平均粒子径が50〜300μmの炭化珪素粉末60〜80体積%を混合した後、離型処理を施した金型に充填し、温度600〜750℃に加熱して、圧力10MPa以上で加熱プレス成形することを特徴とする、板厚2〜6mmの板状アルミニウム−炭化珪素質複合体の製造方法。 (もっと読む)


【課題】強化材である窒化物セラミックス粉末の酸化を防止するとともに、金属と複合化して得られる複合材料の反り、クラックおよび未含侵等の問題を解消し、熱伝導性、機械的強度等に優れた金属基複合材料を提供する。
【解決手段】セラミックス粉末の成形体に大気加熱を伴う高圧含侵により金属を含侵させた金属基複合材料であって、窒化物セラミックス粉末からなる強化材と、前記強化材の表面を被覆した酸化物セラミックス粉末からなる被覆層と、アルミニウムまたはアルミニウム合金からなるマトリックス金属とを備え、前記被覆層は、開気孔に前記マトリックス金属が浸透した浸透層と、前記強化材に密着し、前記マトリックス金属が浸透していない非浸透層とからなることを特徴とする。 (もっと読む)


【課題】多孔質焼結金属層とステンレス鋼からなる裏金との間に剥離等を生じることなく強固な接合一体化を行わしめることができると共に多孔質焼結金属層の気孔率を高めて当該多孔質焼結金属層を流通する圧縮気体による浮上量を高めることができる多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受を提供すること。
【解決手段】ステンレス鋼からなる裏金2と、この裏金2の一方の面に接合層3を介して一体にされた多孔質焼結金属層4とを具備しており、多孔質焼結金属層4の粒界に無機物質粒子が分散含有されており、無機物質粒子を含有する多孔質焼結金属層4は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、残部が銅からなる軸受素材。 (もっと読む)


【課題】熱膨張係数、熱伝導率、耐酸化性、めっき性などの点で優れた特性を維持しながら強度特性を顕著に改善された、LEDパッケージの基板として好適なアルミニウム−黒鉛−炭化珪素質複合体を提供する。
【解決手段】黒鉛粉末を60〜90体積%、平均粒径が100μm以下の炭化珪素粉末を10〜40体積%を含み、気孔率が10〜30体積%である成形体に、アルミニウム又はアルミニウム合金を溶湯鍛造法により加圧含浸させてなることを特徴とするアルミニウム−黒鉛−炭化珪素質複合体。該複合体は、熱膨張係数が12×10−6/K以下であり、気孔率が5体積%以下であり、かつ密度が2.2〜2.6g/cmであり、熱伝導率が200W/(m・K)以上であり、かつ曲げ強度が40MPa以上という優れた特性を有する。 (もっと読む)


【課題】強度が高く、耐摩耗性に優れる液相焼結アルミニウム合金、及びこの合金の製造に適した液相焼結アルミニウム合金の製造方法を提供する。
【解決手段】本発明液相焼結アルミニウム合金は、母材中に、酸化アルミニウムを主成分とする硬質粒子及びムライトを主成分とする硬質粒子の少なくとも一方を0.5質量%以上3.0質量%以下含有する。特定の硬質粒子を特定の範囲含むことで、鉄系焼結材よりも高強度であり、耐摩耗性に優れる。この液相焼結アルミニウム合金は、母材粉末と、酸化アルミニウムを主成分とする硬質粒子及びムライトを主成分とする硬質粒子の少なくとも一方とを混合した混合粉末を成形した成形体を液相焼結することで製造される。焼結法により製造することで、複雑な三次元形状の製品でも簡単に製造することができる。 (もっと読む)


【課題】 常温のみならず高温でも強度特性に優れるなどの優れた性能を有するマグネシウム基複合材料を提供する。
【解決手段】 本発明にかかるマグネシウム基複合材料は、マグネシウム合金と添加材との固相反応により得られたマグネシウム基複合材料であって、前記添加材は希土類金属、Sr又はBaの酸化物、炭化物、珪化物及び炭酸塩、Caの炭化物、珪化物及び炭酸塩から選択される1種以上であり、前記固相反応により生成した金属間化合物を含むことを特徴とする。該マグネシウム基複合材料中には、金属間化合物とともに添加材が分散していることができる。 (もっと読む)


【課題】硬度や破壊靱性が大きく、割れても破片が飛散しにくい軽量の耐衝撃複合部材およびその製造方法を提供する。
【解決手段】耐衝撃複合部材1は、セラミックスの強化材と金属からなる母材とにより形成され、衝撃に対して破壊または破片飛散を防止する耐衝撃複合部材1であって、母材のみにより形成される母材領域3と、母材と強化材との複合材料により形成され、母材領域を介して離散的に形成される複数の複合材料領域2と、を備える。耐衝撃複合部材1は、複合材料領域2に金属基複合材料を用いているため、軽量で、その硬度や破壊靱性が大きい。また、複合材料領域2の間隙に金属の母材領域3を有するため、割れたときに破片が飛散しにくい。その結果、たとえば銃弾が当たったとき、その貫通が阻止され、割れた破片の飛散が防止される。 (もっと読む)


【課題】気体のリークを防止できるほど良好な気密性を有し、かつ、接合部の強度が高いAl合金-セラミックス複合材料接合体を提供する。
【解決手段】Mgを0.5〜5質量%含んだAl合金をマトリックスとしたAl合金-セラミックス複合材料同士が、その組成がAl、Znおよび、その他不純物成分からなり、AlとZnの質量比Al/Znが0.85〜2.33である接合材を用いてなる接合層を介して接合された接合体であって、前記接合層に接したAl合金−セラミックス複合材料のマトリックスのAl合金中に前記接合材のZnが拡散した拡散層を有する。 (もっと読む)


【課題】所望の耐摩耗性を維持できる摺動寿命を延長でき得る金属複合材および金属複合材の製造方法を提案する。
【解決手段】珪酸塩水和物3から結晶水を除去してなる多孔質状の珪酸塩化合物3’が、金属母材6’内に分散しており、外表面に、多孔質状の珪酸塩化合物3’が露出してなる金属複合材10である。この金属複合材10を、多孔質状の珪酸塩化合物3’と強化材2とを混在するプリフォーム1を成形し、金属の溶湯6を加圧含浸し、外表面を研磨することにより製造する。珪酸塩化合物3’は、その結晶水が除去された痕に極めて微細な空孔を有し、且つ吸着性を有していることから、外表面に露出した珪酸塩化合物3’内に潤滑オイルを保持することができる。そのため、比較的長期間摺動停止した後でも、摺動初期から、金属母材6’と相手材とに焼き付きが発生することを防止でき、所望の耐摩耗性を発揮でき得る。 (もっと読む)


【課題】本発明は、燃焼合成法で得られたチタン−アルミ金属間化合物を含む複合材料であって、優れた耐熱性、および耐摩耗性を有すると共に、優れた靭性をも発揮する複合材料、およびその製造方法を提供することを課題とする。
【解決手段】本発明は、金属チタン粉末5およびセラミックス粉末6と、溶融アルミ7とを燃焼合成反応させてチタン−アルミ金属間化合物2を主成分とする複合層3が形成された複合材料であって、前記複合層にはセラミックス繊維4が分散していることを特徴とする。 (もっと読む)


リチウムイオン電池の負極として有用性を有する複合材料が、珪素、遷移金属、セラミック及び炭素のような導電性稀釈剤を含む。特に例として、セラミックは、導電性であり、またバナジウムカーバイド又はタングステンカーバイドを含み得る。遷移金属は、いくつかの例において鉄を含み得る。この材料は、成分の出発混合物を共に粉砕することにより加工され得、粉砕は、高衝撃ボールミル粉砕処理により達成され得、また粉砕工程は、珪素と金属及び/又は炭素との部分的な合金化を生じさせ得る。更に、この材料及びこの材料を組み込む電極の製造方法を開示する。
(もっと読む)


【課題】アルミニウム酸化物に鉄が分散した形態を有するアルミニウム酸化物−鉄複合部材を提供する。また、該アルミニウム酸化物−鉄複合部材を安価に製造する方法を提供する。
【解決手段】アルミニウム酸化物−鉄複合部材であって、アルミニウム酸化物と鉄粒子を有し、前記アルミニウム酸化物中に前記鉄粒子が分散していることを特徴とする。アルミニウム酸化物−鉄複合部材の製造方法において、酸化鉄粉末とアルミニウム粉末の混合物を成形して成形体を得る成形工程と、前記成形体を非酸化性不活性ガス雰囲気中で熱処理する熱処理工程とを有することを特徴とする。 (もっと読む)


【課題】アルミニウム−セラミックス複合体の残留応力を除去することにより、使用環境下での温度変化等による、平面度や寸法の変化量が極めて小さい寸法安定性に優れる大型部品にも適用可能なアルミニウム−セラミックス複合体を提供する。
【解決手段】アルミニウム−セラミックス複合体を製造した後、各種温度条件にて加熱冷却処理を行い、複合化時及び加工時の残留応力に加え、複合体由来の残留応力を除去することで、複合体由来の残留応力を低減することにより、アルミニウム−セラミックス複合体の寸法安定性を改善する。 (もっと読む)


【課題】カーボンが均一に分散したマグネシウム合金の製造方法を提供すること。
【解決手段】マグネシウム合金100質量部に対し5〜30質量部のカーボン粉末、カーボンナノファイバーおよびカーボンナノチューブのいずれか少なくとも一種類を混合してマスターバッチを調製後、質量比で3〜20倍量のマグネシウム合金と混合することを特徴とするカーボン含有マグネシウム合金の製造方法である。 (もっと読む)


61 - 80 / 187