説明

Fターム[4K021AA01]の内容

Fターム[4K021AA01]に分類される特許

201 - 220 / 847


【課題】簡単な工程で、運転停止時にアノード側に残存する水素を確実に除去することができ、効率的な水電解処理を遂行することを可能にする。
【解決手段】水電解システム10は、純水を電気分解することによって高圧水素を製造する水電解装置12と、前記水を前記水電解装置12に循環させる水循環装置14と、前記水電解装置12から排出される前記酸素及び高圧水素を、前記水循環装置14内の水から分離する気液分離装置16と、前記気液分離装置16に貯留される前記水を、前記水電解装置12に循環させる水循環装置14とを備える。運転方法は、水電解装置12が停止されたか否かを判断する工程と、前記水電解装置12が停止されたと判断した際、カソード側の圧力を脱圧する工程と、前記カソード側の脱圧が終了した状態で、アノード側に残存する水素の濃度が規定値以下になるまで、水循環装置14の運転を行う工程とを有している。 (もっと読む)


【課題】セパレータの押し付け力付与面積を有効に削減することができ、押し付け力付与装置の小型化が容易に図られるとともに、所望のシール面圧を確保することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。カソード側セパレータ36には、第1シール溝68aの外方に位置し且つ固体高分子電解質膜38に対向する第1セパレータ平面部36aaに、前記固体高分子電解質膜38により閉塞される凹部70が形成される。第1セパレータ平面部36aaの凹部70以外の平坦部と、アノード側セパレータ34の第2セパレータ平面部34aaとは、固体高分子電解質膜38を挟んで積層方向の荷重を受ける受圧部72を構成する。 (もっと読む)


【課題】少ないエネルギーで溶液中に溶解している媒質を改質することのできる改質装置を提供する。
【解決手段】光起電力を用いて溶液を電気分解し、溶液中に気泡を発生させる気泡生成部10と、気泡内にプラズマを生成するプラズマ生成部20とを備え、プラズマ生成後の上記気泡内の構成粒子によって媒質を改質させる。 (もっと読む)


【課題】固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、運転モードの切り替えを安全、かつ確実に行い、効率の良い運転を実現する。
【解決手段】固体高分子形の水電解装置と燃料電池とを一体化させた可逆セル1において、水電解装置運転から燃料電池運転への運転モードの切り替えにあたって、可逆セル1内部の流路に不活性ガス供給源31から不活性ガスを供給して、可逆セル1の内部を乾燥させる。乾燥状況は、交流抵抗測定器35によって給・集電板2、3間の抵抗上昇に基づいて判断し、抵抗上昇値が適切な範囲内になったら、制御装置34がガスの供給を停止させ、以後燃料電池運転が開始される。 (もっと読む)


【課題】水電解と燃料電池を一体化した可逆セルの水電解運転時や、水電解専用機による水素製造において、高圧水素発生運転時に問題となる両極間の差圧を容易に解消すると共にシステムのコンパクト化を実現する。
【解決手段】水電解を行うセル10と、セル10で発生した水素ガスを貯蔵する水素側貯蔵タンク11と、セル10で発生した酸素ガスを貯蔵する酸素側貯蔵タンク12とを備えた高圧水素製造システム1であって、水素側貯蔵タンク11内と酸素側貯蔵タンク12内に、所定のガスが封入された変形自在な圧力吸収体60、80が設けられている。水素側貯蔵タンク11内と酸素側貯蔵タンク12内に圧力吸収体を具備することで、両極間の差圧制御をすることなく差圧の発生を未然に防止または緩和する。 (もっと読む)


【課題】水電解による水素製造と、炭化水素系燃料から高効率に水素製造を行うとともに、効率的な二酸化炭素回収により炭化水素系燃料由来の二酸化炭素を回収するハイブリッド水素製造システムを得る。
【解決手段】水を原料とする水電解水素製造装置と、炭化水素系燃料の水蒸気改質による水素分離型水蒸気改質器と、前記炭化水素系燃料の水蒸気改質用加熱源である燃焼器と、前記炭化水素系燃料の改質用水蒸気発生用ボイラを有するハイブリッド水素製造システムであって、前記燃焼器が前記水電解水素製造装置から供給される酸素による燃焼器であり、前記水素分離型水蒸気改質器からのオフガスと前記燃焼器からの燃焼排ガスと前記炭化水素系燃料の改質用水蒸気発生用ボイラからの燃焼排ガスを冷却して一つに合流させた後、水分離器に導入するようにしてなる水電解水素製造装置と水素分離型水蒸気改質器とを含むハイブリッド水素製造システム。 (もっと読む)


【課題】マイクロスケール実験に安全かつ安定して使用できるマイクロスケール実験部材を提供する。
【解決手段】マイクロスケール実験に使用されるマイクロスケール実験部材であって、両端が開放された筒状本体部と、前記筒状本体部の外周に形成された鍔部とからなり、前記鍔部は、前記筒状本体部の中央部と下端部との間に形成されたことを特徴とする、マイクロスケール実験用の鍔付き筒状物である。 (もっと読む)


【課題】第2次混合ガス生成槽に於いて、活性化された第2次混合ガス(活性イオン)を生成することできる燃焼ガス発生装置を提供する。
【解決手段】第1次混合ガス生成槽及び気液分離槽3によって生成された第1次生成ガスc及びガス供給装置9から供給された混合前燃料ガスをそれぞれ同時に受け入れると共に、活性化促進部材を介してかつ揮発性炭化水素eの中を通過させながら、これらの物質の授受による相補作用により活性化された第2次混合ガスfを生成する第2次混合ガス生成槽7と、この第2次混合ガス生成槽7によって生成された第2次混合ガスfを燃焼する燃焼手段12とから成る燃焼ガス発生装置Xであって、第2次混合ガス生成槽7は、反応タンク本体と、この反応タンク本体の上端開口から取り出すことができるように該上端開口から所定位置まで差し込まれ、その挿入下端部にフィルターを備えた活性化促進部材とから成る。 (もっと読む)


【課題】給電性能とシール性能との両立を図るとともに、製造コストの低減を図ることができる水電解用給電体、水電解装置および水電解装置の製造方法を提供する。
【解決手段】、膜電極接合体の少なくとも一方の面に隣接して配置される水電解用給電体3,4であって、膜電極接合体の面と直交する方向に延びて設けられた壁部31によってハニカム構造が形成され、壁部31は、座屈点を超えて圧縮変位に関わらず面圧が一定となる圧縮変位が与えられ、座屈していることを特徴とする。 (もっと読む)


【課題】電流を充分に拡散させ、電流密度が高くなることによる発熱を防止することで、これに起因する電解質膜破損を防止することを目的とする。
【解決手段】電解セル用給電体1が、網状に形成され相互に積層された複数の金属製板材2a〜2gを備え、隣接する金属製板材2a〜2gが個別にスポット溶接され、スポット溶接によるナゲット間の最小離間距離が下記の数1式により定義される。
【数1】


ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。 (もっと読む)


【課題】簡単な構成で、比較的低圧な第1流体供給連通孔と第1流体排出連通孔とのシール圧を均等に維持することができ、シール性能の低下を可及的に阻止することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。アノード側セパレータ34には、水が供給される第1流路54が形成され、カソード側セパレータ36には、前記水が電気分解されて高圧水素を得る第2流路58が形成される。第1流路54に水を供給するための水供給連通孔46と、反応により生成された酸素及び使用済みの水を排出するための排出連通孔48とは、点対称の位置に配置され、且つ、前記水供給連通孔46と前記排出連通孔48とを繋ぐ仮想直線に直交する仮想直交線上に、反応により生成された水素を流すための水素連通孔50が配置される。 (もっと読む)


【課題】各水通路に水を均等に分配することができ、水流路全体に前記水を均一且つ確実に供給して良好な水分解処理を行うことを可能にする。
【解決手段】水電解装置10は、アノード側セパレータ34を備え、前記アノード側セパレータ34には、水流路54が設けられる。水流路54は、複数の水通路56、円弧状入口バッファ部58a及び円弧状出口バッファ部58bを備える。各水通路56の一端と円弧状入口バッファ部58aとは、複数の入口連結通路60aを介して連通するとともに、前記複数の入口連結通路60aは、前記円弧状入口バッファ部58aとの連結部位での接線に対してそれぞれ異なる角度に設定される。各角度は、中央側の入口連結通路60aから両側の入口連結通路60aに向かって、順次、大きな角度に設定される。 (もっと読む)


【課題】本発明は、安定したエッチング処理を行うことができるエッチング処理方法、微細構造体の製造方法、およびエッチング処理装置を提供する。
【解決手段】硫酸溶液を電気分解して酸化性物質を生成するとともに、生成される前記酸化性物質の生成量を制御して、所定の酸化種濃度を有するエッチング溶液を生成し、生成された前記エッチング溶液を被処理物の表面に供給すること、を特徴とするエッチング処理方法が提供される。 (もっと読む)


【課題】簡単な構成で、水流路の圧力損失を良好に低減させることができ、効率的且つ経済的に水を流通させることを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32と、この電解質膜・電極構造体32を挟持するアノード側セパレータ34及びカソード側セパレータ36とを備える。アノード側セパレータ34には、水供給連通孔46に連通する複数の入口連結流路52aと、排出連通孔48に連通する複数の出口連結流路52bとが設けられる。出口連結流路52bの流路断面積は、入口連結流路52aの流路断面積よりも大きく設定される。 (もっと読む)


【課題】水流路に水を均等に分配することができ、前記水流路全体に前記水を均一且つ確実に供給して良好な水分解処理を行うことを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32と、この電解質膜・電極構造体32を挟持するアノード側セパレータ34及びカソード側セパレータ36とを備える。アノード側セパレータ34には、水供給連通孔46に連通する複数の入口連結流路52aと、排出連通孔48に連通する複数の出口連結流路52bとが設けられる。水供給連通孔46は、複数の入口連結流路52aが開口する連通孔内側壁面46a及び前記連通孔内側壁面46aに対向する連通孔外側壁面46bが、長尺な開口断面長円形状を有する。 (もっと読む)


【課題】各水通路に水を均等に分配することができ、前記水流路全体に前記水を均一且つ確実に供給して良好な水分解処理を行うことを可能にする。
【解決手段】水電解装置10は、アノード側セパレータ34を備え、前記アノード側セパレータ34には、水供給連通孔46及び排出連通孔48に連通する水流路54が設けられる。水流路54は、複数の水通路56、円弧状入口バッファ部58a及び円弧状出口バッファ部58bを備える。各水通路56の一端と円弧状入口バッファ部58aとは、複数の入口連結通路60aを介して連通するとともに、前記複数の入口連結通路60aは、前記円弧状入口バッファ部58aとの連結部位での接線に対して90度以上の角度に設定される。 (もっと読む)


【課題】光利用効率が高く、高効率で水素を製造することができる水素製造装置を提供する。
【解決手段】本発明の水素製造装置は、受光面および裏面を有する光電変換部と、前記裏面の上に設けられた第1の気体発生部と、前記裏面の上に設けられた第2の気体発生部とを備え、第1の気体発生部および第2の気体発生部のうち、一方は電解液からH2を発生させる水素発生部であり、他方は電解液からO2を発生させる酸素発生部であり、第1の気体発生部は前記裏面と電気的に接続され、第2の気体発生部は第1の導電部を介して前記受光面と電気的に接続することを特徴とする。 (もっと読む)


水酸化ナトリウムおよび水から水素を産生する方法を開示する。当該方法は、ナトリウムイオン分離器中で第1水性水酸化ナトリウム流れからナトリウムを分離し、ナトリウムイオン分離器中で産生されたナトリウムをナトリウム反応器に供給し、ナトリウム反応器中のナトリウムを水と反応させ、そして第2水性水酸化ナトリウム流れおよび水素を産生することを含む。当該方法はまた、第2水性水酸化ナトリウム流れを第1水性水酸化ナトリウム流れと組み合わせることにより、第2水性水酸化ナトリウム流れを再利用することも含み得る。水素を産生するシステムも開示する。 (もっと読む)


【課題】製作が容易で、かつ、イオン交換膜が破損せず、長期間安定的に運転が可能なイオン交換膜法電解槽を提供する。
【解決手段】イオン交換膜法電解槽において、電極支持部材6が耐食性フレームに金属製コイル体を巻回した弾性マットで構成され、電極支持部材6は集電板に固定され、可撓性電極5は集電板にピン8で稼動可能な状態で固定され、かつ、ピン8は可撓性電極5と集電板とを貫通するが弾性マットを貫通せず、かつ、弾性マットは可撓性電極5と集電板との間に収容されてなるイオン交換膜法電解槽を用いる。 (もっと読む)


本発明は、コバルト、酸素、及び、緩衝電解質(例えば、フッ化物)から形成された電気分解触媒を提供する。それは、コバルト及びアニオン性緩衝電解質を含んだ電解質を用いる電気分解反応を行うことによって、アノード上の被覆物として形成される。その触媒は、弱酸性条件において水の酸素及び水素ガスへの転換を促す。その代わりに、これらのアノードは、二酸化炭素からメタノールへ転換反応などを促進するカソードとともに使用することができる。
(もっと読む)


201 - 220 / 847