説明

Fターム[4K021BB02]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 電解条件 (611) | 電解液のpH (62)

Fターム[4K021BB02]に分類される特許

1 - 20 / 62


【課題】比較的弱い酸及びアルカリを用いて、酸化物半導体に含まれる金属を回収することが可能な技術を提供することを目的とする。
【解決手段】金属回収方法は、破砕ガラス7の配線金属を、第1電解液14aを用いて溶解する電解酸化を行う工程と、その後の破砕ガラス7のITOを、第2電解液14bを用いて還元してIn,Snを生成する電解還元を行う工程とを備える。そして、金属回収方法は、その後の破砕ガラス7を第3電解液14cに浸漬させて、In,Snを第3電解液14cに溶解した後、当該第3電解液14cからIn,Snを回収する工程を備える。 (もっと読む)


【課題】不純物となるアルカリ金属イオンを極めて低減させた過塩素酸塩を製造する。
【解決手段】過塩素酸塩製造装置100は、塩素酸イオンとナトリウムイオンを含む水溶液が収容されるとともに陽極322が設けられるアノード槽220と、HOが収容されるとともに陰極332が設けられるカソード槽230とが陽イオン交換膜240で仕切られている電解槽210と、陽極322および陰極332に電圧を印加するための直流安定化電源260と、電解酸化によりアノード槽220において生成したアノード溶液(2次アノード溶液AS2)に塩基性化合物を導入して、当該アノード溶液のpHを、7.0を上回る値にする塩基性化合物導入部400と、pHが7.0を上回る値となったアルカリ性のアノード溶液に二酸化炭素を導入する二酸化炭素導入部450とを備える。 (もっと読む)


【課題】過塩素酸の製造に際して原材料の調達安定性を高めることができる過塩素酸塩の製造装置および製造方法の提供。
【解決手段】陽極4が設けられる陽極側4Aと陰極5が設けられる陰極側5Aとが陽イオン交換膜6で仕切られ、該陽極側4Aにおいて塩化ナトリウム水溶液を電解酸化する電解槽1と、陽極側4AにおけるpHを計測するpH計12と、pH計12の計測結果に基づいて、電解槽1の陽極側4Aに水酸化ナトリウム水溶液を添加し、前記塩化ナトリウム水溶液を電解酸化して塩素酸を主成分とする水溶液を生成する過程において、前記電解酸化時の陽極側4AにおけるpHを調節するpH調節装置15と、を有する過塩素酸アンモニウム製造装置Aを採用する。 (もっと読む)


【課題】インジウム−亜鉛酸化物(IZO)スパッタリングターゲット又は製造時に発生するIZO端材等のIZOスクラップから、インジウム及び亜鉛を効率良く回収する方法を提供する。
【解決手段】アノード及びカソードの双方にIZOスクラップを使用し、極性を周期的に反転して電解することにより、インジウム及び亜鉛を水酸化物として回収することを特徴とするIZOスクラップからの有価金属の回収方法及び前記電解することにより得たインジウム及び亜鉛の水酸化物を焙焼してインジウム及び亜鉛の酸化物として回収することを特徴とする前記IZOスクラップからの有価金属の回収方法。 (もっと読む)


【課題】電解法により水酸化インジウム、又は、水酸化インジウムを含む化合物を製造するに際し、アノードの表面に水酸化インジウム、又は、水酸化インジウムを含む化合物が付着するのを抑制し、かつカソードの表面にインジウム、又は、インジウム合金が電着することを防止し、生産性の低下や品質の低下を抑制する方法を提供する。
【解決手段】電解槽の中にカソード板と原料となるインジウム、又は、インジウム合金のアノード板とを、間隔を置いて交互に配列し、該カソード板とアノード板の間であり、かつ各カソード板とアノード板の一方の側縁の近傍位置に、カソード板とアノード板の他方の側縁に向かって電解液を供給するノズルを配置し、このノズルの開口部より流出させた電解液を、電解槽中の各カソード板とアノード板の間で回流させ、水酸化インジウム、又は、水酸化インジウムを含む化合物を電解液中に析出させる (もっと読む)


【課題】安価なコストで、高純度のタングステンを回収する方法を提供する。
【解決手段】タングステン成分を含有する原料混合物に対して、アルコールアミンを含有する電解液を用いて電気分解を行う工程を含むタングステンの回収方法。 (もっと読む)


【課題】電解液から気泡を除去しやすいアルカリ水電解装置およびアルカリ水電解方法を提供すること。
【解決手段】アルカリ水電解装置は、陽極25が配置された陽極室20と、陰極35が配置された陰極室30と、陽極室20と陰極室30とを区画する隔膜40とを有し、電解液80を電気分解して水素78を製造する電解槽10を備えたアルカリ水電解装置であって、電解槽10は、陽極室20の底部導入部26から導入された電解液80が頂部排出部28に向かって陽極室20内を上方に流れるとともに、陰極室30の底部導入部36から導入された電解液80が頂部排出部38に向かって陰極室30内を上方に流れる構造であり、電解液80は、27℃で測定したpHが14以上、27℃で測定した電気伝導率が0.25S/cm以上、かつ密度が1.25kg/m以上である。 (もっと読む)


【課題】 電解再生液を用いた製造方法で、初回の還元剤含有液(バージン反応液)を用いた場合と遜色ない程度の金属微粒子を得ることができる製造方法を提供する。
【解決手段】 使用済み還元剤含有液を電解処理することにより、使用済み還元剤を還元再生した電解再生液を用いて、金属微粒子を繰り返し製造する方法であって、電解再生液に、金属イオン及び分散剤を補充する工程;並びに前記金属イオン及び分散剤が添加された電解再生液のpHを、前記還元剤の電極電位が前記金属イオンが原子となる電極電位よりも低くなるように調節して、還元反応を開始させる工程を含む。前記還元剤は、チタン塩であることが好ましい。 (もっと読む)


【課題】環境面及びエネルギー効率に優れる二酸化炭素からの有用物質であるギ酸の生産方法を提供する。
【解決手段】二酸化炭素を吸蔵可能な多孔性金属錯体と、1,1’−ジメチル−4,4’−ピピリジニウムなどの両親媒性の電子供与剤と、前記多孔性金属錯体と複合化された[(C5H5Co)3S2]などの三核遷移金属硫黄クラスター触媒と、を含む水性媒体中において、二酸化炭素を電解還元してギ酸を生成させる工程を実施する。 (もっと読む)


【課題】水を電気的に処理してラジカル酸素水を生成するとき、電気的処理の劣化現象を抑制可能とする。
【解決手段】水電解システムは、水供給部と、電解液供給部と、水電解装置1とを具備する。水供給部は、水を供給する。電解液供給部は、電解液を供給する。水電解装置1は、陽極に水、陰極に電解液を供給され、水を電気分解する処理を実行し、処理後の水を送出する。水電解装置1は、固体電解質膜10と陰極8とが離れて設けられている。陰極8に供給される電解液は、塩素イオンを含む。塩素イオンの濃度は、50mg/L以上飽和濃度以下である。 (もっと読む)


【課題】 一隔膜二室型の電解装置で酸性又はアルカリ性の電解水を選択的に、かつ、単独で生成することができると共に、電解効率を向上させることで所望のpHや濃度の電解水を生成することができる電解水の製造装置を提供することを目的とする。
【解決手段】 陽極室と陰極室とを隔てる陽イオン透過膜を有する第1の電解装置と、陽極室と陰極室とを隔てる陰イオン透過膜を有する第2の電解装置と、前記第1の電解装置と前記第2の電解装置に電解質水溶液を供給する供給槽とを備えたことを特徴とする。 (もっと読む)


【課題】自然放置しても水中の水素が散逸して経時的に水素濃度が低下しにくい水素含有水を提供する。
【解決手段】水素含有水の製造方法。(1)ヒドロキシアパタイトの酸性水溶液を製造する工程、(2)工程(1)で製造した酸性水溶液とアルカリ水溶液を混合して、pHが5〜8の範囲である分散液を製造する工程、(3)工程(2)で製造した分散液において水の電気分解を行うことで水素含有水を得る工程を含む。 (もっと読む)


【課題】環境への負担が少なく、海水からマグネシウムを回収するマグネシウム回収方法及びマグネシウム回収装置を提供する。
【解決手段】海水7を電解し、海水電解により生成されたアノード電解水7aとカソード電解水7bとを分離し、前記アノード電解水にアルカリ材を投入してpH調整し、前記カソード電解水中にマグネシウムを水酸化マグネシウムとして析出させて回収し、pH調整後のアノード電解水と水酸化マグネシウム回収後のカソード電解水とを合流させ、海水と同等のpHとして放流する。 (もっと読む)


【課題】三室型電解水生成装置において、原水として硬度成分を含むものを使用した場合であっても、陰極などへのスケール付着を防止する。
【解決手段】陽極15を配した陽極室14と、陰極12を配した陰極室11と、陽極室14に対して陰イオン交換膜17によって隔てられ陰極室11に対して陽イオン交換膜16によって隔てられた中間室13と、から構成された三室構造の電解槽1を有する三室型電解水生成装置を使用し、陽極室14及び陰極室11に原水を供給し中間室13に塩類の水溶液を供給しつつ陽極15と陰極12との間に電圧を印加して陽極室14及び陰極室11から電解水を得る際に、電圧を印加しているときの中間室の溶液のpHが酸性になるように制御する。さらに、電解水の生成を停止して電圧の印加を停止する期間を設ける。 (もっと読む)


【課題】正電荷を有する金属イオン同士を容易に分離することができる金属イオンの選択分離方法及び装置を提供する。
【解決手段】分離対象の複数種の金属イオンと所定のキレート化剤とが含まれた混合液を第1のバイポーラ膜14とイオン交換膜16とにより形成された第1の液体循環室22に循環し、正負の電極12a,bの間に適宜な直流電圧を印加すると、第1のバイポーラ膜14で水が水素イオン(H)と水酸化物イオン(OH)とに分解され、発生した水素イオンが、上記第1の液体循環室22に移動し、第1の液体循環室22のpHを低下させる。この低下したpHで混合液中に存在する金属イオンがイオン交換膜16(陽イオン交換膜)を透過して第2の液体循環室24側に移動し、陰イオンであるキレート錯体として存在する金属イオンはイオン交換膜16を透過しない。これにより、金属イオン同士を分離する。 (もっと読む)


【課題】従来のアンモニウムイオン及びリン酸イオン含有の有機性廃水処理システムにおいて、マグネシウム製アノード空気電池手段により効率よく継続して窒素及びリンをMAPとして除去・回収すると共に発電する手段は開示されていなかった。
【解決手段】マグネシウム金属またはマグネシウム合金の電気化学的に卑電位の金属をアノードとし、前記アノードよりも貴電位の金属、炭素質材または前記貴電位の金属及び炭素質材に金、白金、バナジウム、ヘモグロビン、動物の血液等から選択した触媒を担持高温処理したものをカソードとした電極対と、電極接続導電手段と、溶存酸素供給手段と、有機性窒素及びリン酸イオン含有の電解液とで空気電池を構成することで、効率よく継続して水酸化物及びMAPを製造する空気電池式電気化学反応手段とする。 (もっと読む)


【解決課題】製造コストが低く、運転管理及び装置管理が簡便な多結晶シリコンの製造方法を提供すること。
【解決手段】高純度四塩化珪素と亜鉛との反応により生成する排出ガスから分離した該塩化亜鉛及び未反応亜鉛の混合物を酸化する酸化処理と、該混合物を塩酸水溶液に溶解させる塩酸水溶液溶解処理と、酸性抽出剤により亜鉛成分を抽出する亜鉛成分抽出処理と、硫酸水溶液により亜鉛成分を逆抽出する亜鉛成分逆抽出処理と、硫酸亜鉛水溶液を水溶液電解する硫酸亜鉛水溶液電解処理と、該亜鉛成分抽出処理で得られる塩酸水溶液のうちの一部の塩酸水溶液を精製する塩酸精製処理及び塩化水素ガスを気化させる塩化水素気化処理、又は該亜鉛成分抽出処理で得られる塩酸水溶液のうちの一部の塩酸水溶液を気化させ、塩化水素を精製する塩化水素気化精製処理とを有し、該塩酸水溶液のうちの他部、該酸性抽出剤を含有する有機溶媒、及び該硫酸水溶液を循環使用する高純度多結晶シリコンの製造方法。 (もっと読む)


【課題】不測の事態が発生した際に対応が可能な被処理水浄化の管理方法を提供しようとするもの。
【解決手段】被処理水中の汚れ成分を有効塩素により分解する浄化工程と、浄化後に残留した有効塩素を塩素ガスとして揮発させる塩素ガス揮発工程と、揮発した塩素ガスを回収する塩素ガス回収工程とを有し、前記塩素ガス揮発工程と塩素ガス回収工程のpH(水素イオン濃度)をインターネット回線を介して遠隔監視するようにした。前記塩素ガス揮発工程と塩素ガス回収工程の残留塩素濃度を、インターネット回線を介して遠隔監視するようにしてもよい。 (もっと読む)


【課題】両電極での水素発生反応を、効率良く長時間生じさせることができる水素発生方法および水素発生装置を提供する。
【解決手段】マグネシウム又はアルミニウムを含むアノード極1と、カソード極2と、前記両極に接触して配置され電解質水溶液4を保持させた多孔質体3と、前記両極を導通させるか又は前記両極に電圧を印加する手段5とを備える水素発生装置であり、カソード極2としては、マグネシウム又はアルミニウムを含むものが好ましい。 (もっと読む)


【課題】高い電流効率で二酸化炭素を電解還元することができる二酸化炭素の電解還元装置を提供する。
【解決手段】(1) 陰極と、陽極と、前記陰極と前記陽極間に電圧を印加する電源とを備え、二酸化炭素を含有する溶液を電解して二酸化炭素を前記陰極で電解還元する電解槽を有する二酸化炭素の電解還元装置であって、前記電解槽の陰極の少なくとも表面の一部が導電性ダイヤモンドからなることを特徴とする二酸化炭素の電解還元装置、(2) 前記電解還元装置において電解槽の陽極の少なくとも表面の一部が導電性ダイヤモンドからなるもの、(3) 前記電解還元装置において電解槽の陰極の導電性ダイヤモンド表面に紫外線を照射する紫外線照射手段を有するもの、(4) 前記電解還元装置において電解槽が隔膜により陽極室と陰極室に区画されているもの。 (もっと読む)


1 - 20 / 62