説明

Fターム[4K021BC03]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 操作 (1,256) | 電解液の循環 (123)

Fターム[4K021BC03]に分類される特許

1 - 20 / 123


【課題】窒素ガスと酸素ガスを原料とし電気化学反応を利用して窒素酸化物を生成する電解窒素固定法を提供する。
【解決手段】電解窒素固定法は、陽極21と陰極22とに接触する溶融塩からなる電解質23を準備するステップと、陰極22に窒素ガスを供給するステップと、電解質23中に酸素ガスを供給するステップと、陽極21と陰極22との間に、陰極22において窒化物イオンが生成し、陽極において酸素が発生する電圧を印加するステップと、生成された窒化物イオンと供給された酸素とを接触させるステップとを含む。また、さらに電解窒素固定法は、陽極と陰極との間に挟むように配置された電解質を準備するステップと、陽極に窒素ガスを接触させるステップと、陰極に酸素ガスを接触させるステップと、陽極と陰極との間に、陰極において酸化物イオンが生成し、陽極において酸化物イオンが酸化されて窒素酸化物が生成する電圧を印加するステップとを含む。 (もっと読む)


【課題】過塩素酸の製造に際して原材料の調達安定性を高めることができる過塩素酸塩の製造装置および製造方法の提供。
【解決手段】陽極4が設けられる陽極側4Aと陰極5が設けられる陰極側5Aとが陽イオン交換膜6で仕切られ、該陽極側4Aにおいて塩化ナトリウム水溶液を電解酸化する電解槽1と、陽極側4AにおけるpHを計測するpH計12と、pH計12の計測結果に基づいて、電解槽1の陽極側4Aに水酸化ナトリウム水溶液を添加し、前記塩化ナトリウム水溶液を電解酸化して塩素酸を主成分とする水溶液を生成する過程において、前記電解酸化時の陽極側4AにおけるpHを調節するpH調節装置15と、を有する過塩素酸アンモニウム製造装置Aを採用する。 (もっと読む)


【課題】本発明は、混合ガス生成装置に関し、COを含んだ電解液の電気分解によってFT反応の原料となる混合ガスを大量生成する場合において、その装置の大型化に伴う生成効率の低下を抑制可能な混合ガス生成装置を提供することを目的とする。
【解決手段】実施の形態3においては、混合槽20内の電解液中のHO濃度を低めに設定した上で、アノード34b等で必要となるHOを適宜添加している。図9に示すように、アノード34aとアノード34bとの間からHOを添加すれば、アノード34bの上流側において、一時的にHO濃度が上昇する。このように、アノード34bの上流側から必要量のHOを添加すれば、カソード32b等における混合ガスの生成量を確保しつつ、HOによる電解液中のCO濃度の低下を抑制できる。 (もっと読む)


【課題】水素の生成効率を低下させず、効率良く熱の回収も可能とした水素生成システムを提供する。
【解決手段】本発明の水素生成システムは、光触媒性半導体を含む第1電極と水を含む電解液(第1電解液及び第2電解液)等とを含み、前記光触媒性半導体に光が照射されることによって前記水が分解されて水素が発生する水素生成デバイス100と、前記第1電解液を水素生成デバイス100外に導出し、且つ水素生成デバイス100内に再び導入する第1循環経路201を含み、第1循環経路201を用いて前記第1電解液を循環させる機構と、第1循環経路201上に設けられた第1熱交換器204と、前記第1電解液の温度を計測する温度計測装置203と、を備える。第1電解液が所定の温度以上である場合に、第1熱交換器204において、第1循環経路201の第1電解液と第1水流ライン205の水との熱交換が行われて、第1電解液が冷却され且つ水が加熱される。 (もっと読む)


【課題】コンパクト且つ経済的な構成で、電力の削減を図るとともに、システム効率の向上を図ることを可能にする。
【解決手段】水電解システム10は、水を電気分解することによって高圧水素を製造する高圧水素製造装置12と、前記水から純水を製造する純水製造装置22と、前記純水製造装置22から導出される純水を前記高圧水素製造装置12に導入する水補給配管20と、前記純水製造装置22に並列して前記水補給配管20に配置され、前記水から陽イオンを除去して脱陽イオン水を製造する第1陽イオン除去装置86と、前記高圧水素製造装置12に対して前記純水製造装置22と前記第1陽イオン除去装置86とを選択的に接続させる切替装置80とを備える。 (もっと読む)


【課題】本発明は、電力源を切り換えるときに電力不足が発生することを抑制することができる発電システムを提供する。
【解決手段】本発明の発電システムは、水を電気分解し水素ガスおよび酸素ガスを発生させる水電解部21と、太陽光を受光することにより生じる光起電力を外部出力または前記水電解部に出力する光電変換部2と、需要電力または前記光電変換部の光起電力に応じて、水素ガスを燃料として発電し起電力を外部出力する燃料電池部22と、前記水電解部により発生させた水素ガスを貯蔵し、貯蔵した水素ガスを前記燃料電池部に供給する水素貯蔵部12と、前記燃料電池部に供給する水素ガスまたは空気の湿度を調節する調湿部10と、制御部17とを備え、前記制御部は、前記光電変換部の光起電力に関する情報または需要電力に関する情報に基づいて、前記調湿部を制御する機能を備えることを特徴とする。 (もっと読む)


【課題】電解法により水酸化インジウム、又は、水酸化インジウムを含む化合物を製造するに際し、アノードの表面に水酸化インジウム、又は、水酸化インジウムを含む化合物が付着するのを抑制し、かつカソードの表面にインジウム、又は、インジウム合金が電着することを防止し、生産性の低下や品質の低下を抑制する方法を提供する。
【解決手段】電解槽の中にカソード板と原料となるインジウム、又は、インジウム合金のアノード板とを、間隔を置いて交互に配列し、該カソード板とアノード板の間であり、かつ各カソード板とアノード板の一方の側縁の近傍位置に、カソード板とアノード板の他方の側縁に向かって電解液を供給するノズルを配置し、このノズルの開口部より流出させた電解液を、電解槽中の各カソード板とアノード板の間で回流させ、水酸化インジウム、又は、水酸化インジウムを含む化合物を電解液中に析出させる (もっと読む)


【課題】比較的簡単な操作でかつ工業的に有利にTAAH含有廃液を再生処理し、高純度のTAAH水溶液を効率良く製品として回収することができるTAAH含有廃液の再生処理方法を提供する。
【解決手段】水酸化テトラアルキルアンモニウム(TAAH)含有廃液の中和工程1と、この中和工程で得られた中和処理液を、陽イオン交換膜4で陽極室5と陰極室6とに区画された電解槽2で電気分解する電解工程とを有し、電解槽の陰極室側から高純度の製品TAAH水溶液を回収するTAAH含有廃液の処理方法であり、中和処理液の濁度(JIS K0101測定法)を5000ppm以下に管理すると共に、陽極室内を循環する陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、陰極室側からTAAH濃度15〜30質量%の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の再生処理方法。 (もっと読む)


【課題】
本発明は、マンガン酸化物を製造する際に副生する廃水溶液を再生して環境に負荷を与えないマンガン酸化物の製造方法を提供する。さらには、廃水溶液からの再生物を原料として再利用するだけでなく、安定かつ効率的にマンガン酸化物を製造することができる方法を提供するものである。
【解決手段】
アルカリを含有するマンガン塩水溶液を電解することでマンガン酸化物を得、該マンガン酸化物と水溶液とを分離して回収する第一工程、該第一工程で回収された水溶液のpHが9以上となるように該水溶液のpHを調整した後に固相と水溶液とを分離して回収する第二工程、該第二工程で回収された水溶液を電気分解して酸水溶液とアルカリ水溶液とを得る第三工程を含むことを特徴とするマンガン酸化物の製造方法を提供する。 (もっと読む)


【課題】簡略な装置構成で電解装置への固形物の混入を防止して連続的かつ安定的な運転を実現する硫酸溶液供給システム及び硫酸溶液供給方法を提供する。
【解決手段】硫酸溶液を冷却する冷却器25、硫酸溶液を電解する電解セル4、バッチ式洗浄機2で使用された硫酸溶液を冷却器25、電解セル4をこの順に介してバッチ式洗浄機2に戻す電解側循環ラインと、バッチ式洗浄機2で使用された硫酸溶液を冷却器25を介さずにバッチ式洗浄機2に戻す使用側循環ラインを備え、電解側循環ラインと使用側循環ラインが、バッチ式洗浄機2から排液された硫酸溶液が流れる共通した共通排液ライン10を有し、共通排液ライン10の下流側端部にある分岐点10aからそれぞれが分岐しており、共通排液ライン10に固形物を捕捉する洗浄機側フィルタ21を備える。 (もっと読む)


【課題】電極面積を低減し、海水電解装置のコンパクト化を図る。
【解決手段】電極として陽極及び陰極が収納された電解槽本体20内に流通される海水Wを、陽極及び陰極間に通電される電流によって電気分解する海水電解装置2を備え、陽極は、酸化イリジウムを含むコーティング材をチタンに被覆してなり、海水電解装置2の前段に、海水中に含まれる塩化物イオンの濃度を高める濃縮手段とを備える海水電解システム100。 (もっと読む)


【課題】本発明は、混合ガス生成装置に関し、電解液へのCOの吸収効率の悪化を抑制可能な混合ガス生成装置を提供することを目的とする。
【解決手段】混合ガス生成装置10は、CO回収器14、電解液タンク16,18、電解器20、水タンク22、NOx除去装置24等を備えている。NOx除去装置24は、CO回収器14よりも上流側に設けられ、NOx(NO、NO、NO)を分離除去する装置である。NOx除去装置24を設けることで、CO回収器14への導入前に、大気中のNOxをNOx除去装置24に吸着させることができる。従って、CO回収器14内の電解液にNOxが吸収されるのを抑制でき、COの吸収効率やCOの還元効率の低下を抑制できる。 (もっと読む)


【課題】スプレーディスペンサからの流体の漏れの恐れを減少させると共に、コンパクトな改良型のスプレーディスペンサを提供する。
【解決手段】スプレーディスペンサは、ベース12と、本体14と、ヘッド16とを構成するハウジング4を有する。本体14は、液体を貯めるリザーバ30を有する。ベース12は、リザーバ30から液体を受け入れて、リザーバ30から受け入れた液体から過酸化水素を発生させ、前記液体中の酸化特性レベルを増大させる電解セル92、及び、リザーバと電解セルとの間で流体を循環させる流体循環システムを有する。ヘッド16は、リザーバから液体を小出しするノズル26を有する。さらに、リザーバからノズルに液体を運ぶために、ユーザの手の人差し指により作動可能なトリガ28が、本体14のヘッド16のノズル側部分の下に設けられている。 (もっと読む)


【課題】硫酸を電解する電解セルにおける硫黄の蓄積による弊害を解消する。
【解決手段】硫酸溶液の出入が可能な電解セル2と、導電性ダイヤモンド電極で構成された電極と、電解セルに対し硫酸溶液の送液を行う送液手段と、電極の陽極と陰極との間に電圧を印加する電源部3と、電源部に対し通常の電解時に陽極と陰極との間に順方向の電圧を印加させるとともに予め定めた条件で陽極と陰極との間に印加する電圧を逆転する転極を実行させる制御を行う電源制御部4を備える電解装置1で、陽極と陰極との間に順方向の電圧を印加して前記電解を行う通常動作を行うとともに、通常動作間に陽極と陰極とに印加する電圧を逆転させる転極動作を行って、通常動作時に電解セル内で生成された硫黄析出物を転極動作時に硫酸溶液中に溶解させて、安定した電解を継続して行うことを可能にする。 (もっと読む)


【課題】部品点数を削減するとともに、一層の小型化及び簡素化を図ることを可能にする。
【解決手段】高圧水素製造装置12は、複数の第1単位セル22aが重力方向に積層される第1セルユニット24aと、前記第1セルユニット24aの重力方向下端部に連結され、複数の第2単位セル22bが前記重力方向に積層される第2セルユニット24bとを備える。第1単位セル22aは、固体高分子電解質膜48の一方の面側に設けられるアノード電極触媒層50a及びアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード電極触媒層52a及びカソード側給電体52とを有し、水を電気分解する水電解セルである。第2単位セル22bは、固体高分子電解質膜48の一方の面側に設けられるアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード側給電体52とを有し、カソード側の水分をアノード側に透過させる水透過セルである。 (もっと読む)


【課題】温調用デバイスを不要することができ、システム全体の小型化及びシステム効率の向上を容易に図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12に供給される循環水の温度を検出する工程と、前記循環水の温度が上昇する運転起動時に、定格運転時の電流密度よりも低い低電流密度で運転する工程と、前記循環水の温度が一定の温度範囲内に維持される際、前記定格運転に移行したと判断する工程と、前記定格運転時に、前記循環水の温度に基づいて予め設定された電流密度で運転する工程とを有する。 (もっと読む)


【課題】酸素水素共存ガス体を燃料に適用するに際して、一般的な燃焼機器での使用に際しても、出力向上が可能で又は安全性が高く、二酸化炭素、一酸化炭素又は炭化水素の排出量の削減が可能な、改良された燃料を提供する。
【解決手段】酸素水素共存ガス体と該酸素水素共存ガス体以外の可燃性ガス体とを含んでなる混合ガスからなり、前記酸素水素共存ガス体は、振動発生手段で発生した振動を、振動棒を介して、該振動棒に取り付けられた振動羽根へと伝達し、該振動羽根を振動させることにより、被処理水に振動流動攪拌を生じさせながら、前記被処理水を電気分解処理に付することで得られたものである、ことを特徴とする燃料。 (もっと読む)


【課題】導電性ダイヤモンド電極を用いて硫酸を直接電解し、酸化性活物質を安定して生成させる、硫酸の電解方法、硫酸の電解装置を提供する。
【解決手段】隔膜9により陽極室3と陰極室4に区画し、陽極室3内に導電性ダイヤモンド陽極10を設け、陰極室4内に陰極12を設け、陽極室3及び陰極室4内に、それぞれ、外部より硫酸イオンを含む電解液を供給して電解を行い、陽極室3内の陽極電解液中に酸化性物質を生成させる硫酸電解方法において、前記硫酸イオンを含む電解液の硫酸イオン濃度を2〜14mol/lとするとともに、前記硫酸イオンを含む電解液を(1)式、(2)式を満たす条件で電解することを特徴とする硫酸電解方法。100≦X≦10000・・・(1)25<Y<250・・・(2)X=電流値/陽極液量(A/l)Y=電流密度(A/dm2(もっと読む)


【課題】導電性ダイヤモンド層の膜厚及び導電性ダイヤモンドの結晶性を制御することにより、電極の耐久性が高く、且つ、低セル電圧で酸化性物質生成効率が高い導電性ダイヤモンド電極、これを用いた、硫酸の電解方法及び硫酸の電解装置を得ることにある。
【解決手段】導電性基体と前記導電性基体の表面に被覆された導電性ダイヤモンド層よりなり、
1)前記導電性ダイヤモンド層の厚さが、1〜25μmであり、
2)電位窓が式(1)を満たし、
3)ラマン分光分析によるダイヤモンド成分Aと非ダイヤモンド成分Bとの比(A/B)が式(2)を満たすことを特徴とする導電性ダイヤモンド電極を構成したことにある。
2.1V≦電位窓≦3.5V ・・・(1)
1.5<A/B≦6.5 ・・・(2)
A=ラマン分光分析における波数1300cm-1における強度
B=ラマン分光分析における波数1500cm-1における強度 (もっと読む)


【課題】 従来の電極に対して、特に、二酸化炭素を効率良く分解し、エタンやエチレン等を効率良く生成可能な電解セル等を提供する。
【解決手段】 電解セル3は、主に、カソード槽である槽16a、金属メッシュ17、カソード電極19、イオン交換膜21、電解質23、アノード電極25、アノード槽である槽16b等から構成される。槽16a、16bには、それぞれ電解液15a、15bが保持される。金属メッシュ17は、電源の負極側に接続され、カソード電極19に対して通電するための部材である。イオン交換膜21としては陰イオン交換膜を使用できる。電解質23は、必要に応じて設けられる。アノード電極25は電源の正極に接続される。カソード電極19は、銅または銅合金(銅基合金であって、銅に種々の目的で所定量の添加元素が添加されたもの)からなる。 (もっと読む)


1 - 20 / 123