説明

Fターム[4K021BC05]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 操作 (1,256) | 保温又は冷却 (131)

Fターム[4K021BC05]に分類される特許

1 - 20 / 131


【課題】水素の生成効率を低下させず、効率良く熱の回収も可能とした水素生成システムを提供する。
【解決手段】本発明の水素生成システムは、光触媒性半導体を含む第1電極と水を含む電解液(第1電解液及び第2電解液)等とを含み、前記光触媒性半導体に光が照射されることによって前記水が分解されて水素が発生する水素生成デバイス100と、前記第1電解液を水素生成デバイス100外に導出し、且つ水素生成デバイス100内に再び導入する第1循環経路201を含み、第1循環経路201を用いて前記第1電解液を循環させる機構と、第1循環経路201上に設けられた第1熱交換器204と、前記第1電解液の温度を計測する温度計測装置203と、を備える。第1電解液が所定の温度以上である場合に、第1熱交換器204において、第1循環経路201の第1電解液と第1水流ライン205の水との熱交換が行われて、第1電解液が冷却され且つ水が加熱される。 (もっと読む)


【課題】クラックの発生や進展を抑制した電気化学セル及び電気化学装置を提供する。
【解決手段】内部をガスが流れる円筒状の支持基体1上に、第1電極、イオン伝導部と電子伝導部とを備えてなる酸素イオン伝導体3および第2電極が順次積層されてなり、第1電極は、両端が隙間を空けて配置されており、第1電極の円周方向で対向する端面と、第1電極の外周面とのなす角度が鈍角であることから、クラックの発生や進展を抑制することができる。また、このような電気化学セルの複数個からなることで、信頼性の向上した電気化学装置とすることができる。 (もっと読む)


【課題】酸素を含む空気のような、より複雑なガスから酸素を分離し、分離された酸素を即座に使用するために又は貯留して後に使用するために、上昇された圧力で送出するような装置を提供する。
【解決手段】より複雑なガスから酸素を分離するために固体の電気化学的装置(22)を用いて、所望の酸素を生成し、該酸素を2000psigまで及びこれを越えるような上昇された圧力で送出する。 (もっと読む)


【課題】簡略な装置構成で電解装置への固形物の混入を防止して連続的かつ安定的な運転を実現する硫酸溶液供給システム及び硫酸溶液供給方法を提供する。
【解決手段】硫酸溶液を冷却する冷却器25、硫酸溶液を電解する電解セル4、バッチ式洗浄機2で使用された硫酸溶液を冷却器25、電解セル4をこの順に介してバッチ式洗浄機2に戻す電解側循環ラインと、バッチ式洗浄機2で使用された硫酸溶液を冷却器25を介さずにバッチ式洗浄機2に戻す使用側循環ラインを備え、電解側循環ラインと使用側循環ラインが、バッチ式洗浄機2から排液された硫酸溶液が流れる共通した共通排液ライン10を有し、共通排液ライン10の下流側端部にある分岐点10aからそれぞれが分岐しており、共通排液ライン10に固形物を捕捉する洗浄機側フィルタ21を備える。 (もっと読む)


【課題】ガス状の媒体を圧縮する方法ならびに装置を改良して、上述の欠点を解消する。
【解決手段】圧縮されるべき媒体を、圧縮V1,V2のまえに、少なくとも圧縮過程中に水の凝縮分離が防止されるまで加熱E1,E2し、圧縮された媒体5,8を水分離D2,D3にかける。 (もっと読む)


【課題】高圧水に溶存する水素を無駄に廃棄することがなく、経済的且つ効率的な水電解処理を安定して行うことを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水が分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から水を排出する排水ライン26と、前記気液分離装置22から前記排水ライン26に排水を行う前に、前記気液分離装置22内の水温を上昇させるための加熱装置92とを備える。 (もっと読む)


【課題】
酸素消費電極を有する電気分解セルに用いるためのプロセスガスを加熱する方法を提供する。
【解決手段】
電気分解プロセス自体にまたは引き続きの仕上げプロセスに存在する熱を用いて、酸素含有プロセスガスを加熱する。 (もっと読む)


【課題】筒状MEA及び分解に供せられるガスの温度を高めて分解効率をより高めることができるとともに、加熱に必要な電力を低減させることのできるガス分解装置及びガス分解方法を提供することを課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層の内周部に積層形成された第1の電極層2と、上記固体電解質層の外周部に積層形成された第2の電極層5とを有する筒状MEA(Membrane Electrode Assembly)7を用いて構成されるガス分解装置100であって、上記筒状MEAを収容して加熱する加熱容器51を備えるとともに、ガス分解反応で生成された排気ガス中の燃焼可能ガスを燃焼させて上記加熱容器を補助加熱できる補助加熱装置71を備えて構成される。 (もっと読む)


【課題】温調用デバイスを不要することができ、システム全体の小型化及びシステム効率の向上を容易に図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12に供給される循環水の温度を検出する工程と、前記循環水の温度が上昇する運転起動時に、定格運転時の電流密度よりも低い低電流密度で運転する工程と、前記循環水の温度が一定の温度範囲内に維持される際、前記定格運転に移行したと判断する工程と、前記定格運転時に、前記循環水の温度に基づいて予め設定された電流密度で運転する工程とを有する。 (もっと読む)


【課題】アンモニア除去処理の負担を低減させることができる過塩素酸アンモニウムの製造装置および製造方法の提供。
【解決手段】陽極4´が設けられる陽極側4Aと陰極5´が設けられる陰極側5Aとが陽イオン交換膜6で仕切られ、陽極側4Aにおいて塩素酸ナトリウム水溶液を電解酸化する電解槽20と、上記電解酸化により生成した上記陽極側4Aの過塩素酸水溶液に含まれる水分の一部を除去して濃縮する濃縮装置40と、上記濃縮された過塩素酸水溶液に、アンモニアを添加して中和反応により過塩素酸アンモニウムを合成する中和槽と、という構成を採用する。 (もっと読む)


【課題】運転停止後に、アノード側にリークする水素量を良好に削減することができ、触媒電極の劣化を阻止して良好な水電解処理を遂行可能にする。
【解決手段】電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側に酸素を発生させるとともに、カソード側に前記酸素よりも高圧な水素を発生させる高圧水電解装置の運転停止方法に関するものである。この運転停止方法は、給電体間に対する電解電圧の印加を停止する工程と、前記電解電圧の印加を停止した状態で、高圧水電解装置内に冷却用媒体を供給することにより、前記高圧水電解装置を冷却する工程と、少なくともカソード側の減圧を行う工程とを有している。 (もっと読む)


【課題】簡素な構成、構造で、水素ガス生成原料を加熱することができる発電・水素ガス発生装置を提供する。
【解決手段】発電・水素ガス発生装置は、水素ガス発生装置10、太陽電池40及び熱輸送部材50を備えており、水素ガス発生装置10は、熱輸送部材50の一端の部分51から構成された分離壁部12によって分離された複数の電気分解セルを備えており、熱輸送部材50の他端の部分52から構成された太陽電池取付部53に太陽電池40が取り付けられており、太陽電池40にて生成した熱が太陽電池取付部53を介して分離壁部12から電気分解セルに伝熱される。 (もっと読む)


【課題】気体発生効率の高い気体製造装置を提供する。
【解決手段】本発明の気体製造装置は、受光面とその裏面を有し、かつ、受光することにより前記受光面と前記裏面との間に電位差が生じる光電変換部と、前記光電変換部の裏面側に設けられ、かつ、前記光電変換部の裏面と電気的に接続した第1電解用電極と、前記光電変換部の裏面側に設けられ、かつ、前記光電変換部の受光面と電気的に接続した第2電解用電極と、前記光電変換部の裏面と第1電解用電極または第2電解用電極との間に設けられた熱電変換部とを備え、第1電解用電極および第2電解用電極は、電解液に浸漬可能に設けられ、かつ、前記光電変換部が受光することより生じる起電力により電解液を電気分解しそれぞれ第1気体及び第2気体を発生させることができるように設けられ、前記熱電変換部は、前記光電変換部から吸熱し第1電解用電極または第2電解用電極に放熱することを特徴とする。 (もっと読む)


【課題】逆火も爆発も起こりにくい水素酸素ガス発生燃焼装置及びその使用方法を提供する。
【解決手段】水素酸素ガス発生燃焼装置は、水を電気分解する電気分解槽31と、電気分解により発生するガスとこれに混合される液体水分とを分離する第1の気液分離槽34と、ガスを燃焼させるバーナー53を含む水素酸素ガス発生燃焼装置であって、第1の気液分離槽34内及び/又は第1の気液分離槽34とバーナー53との間にガスを冷却する冷却器38を備え、冷却器38より下流側かつバーナー53までの間にガスを暖める加熱器51を備える。この装置の使用方法は、加熱器51で暖めるガス温度T2を、冷却器38で冷却するガス温度T1及びバーナー53が配置されている雰囲気温度T3より高い温度に維持して運転する。 (もっと読む)


【課題】作業負担およびコストの低減が可能な気体発生装置を提供する。
【解決手段】フッ素ガス発生装置100は、電解槽1を備える。電解槽1内には電解浴1aが形成されている。陰極室3内に陰極5が設けられ、陽極室4内に陽極6が設けられる。陰極5および陽極6の間に電圧が印加されることにより、HF(フッ化水素)の電気分解が行われる。電解槽1の陰極5から主として水素ガスが発生し、陽極6から主としてフッ素ガスが発生する。HF吸着塔60〜63に充填されたNaFペレットを加熱するための加熱炉80,81が設けられる。加熱炉80内にHF吸着塔60,62が設けられ、加熱炉81内にHF吸着塔61,63が設けられる。 (もっと読む)


【課題】エネルギーの有効利用を図るために、飛散し易い熱エネルギーを用いて、貯蔵が容易な化学エネルギーとしての水素を効率良く安定して製造することができる水素製造装置および素製造方法を提供する。
【解決手段】高炉のように、繰り返し熱サイクルの比較的少なく、年中安定して高温の廃熱が得られる箇所に、耐熱温度の高い熱電素子を有する熱電発電装置(熱電変換モジュール11)を設置して熱電発電を行うとともに、同じく廃熱を利用して、給水タンク21からの水を水蒸気発生装置(水蒸気加熱器12、熱交換器14)によって1000℃程度の高温水蒸気あるいは600℃程度の中温水蒸気にした上で、前記の発電電力を用いて、電気化学装置(電解装置13)によって、前記の水蒸気を電気分解して水素と酸素を製造し、製造した水素を水素タンク23に、酸素を酸素タンク24にそれぞれ貯蔵する。 (もっと読む)


【課題】簡単且つ経済的に構成することができ、しかも低温部品を高温から保護するとともに、排熱の有効利用を図ることを可能にする。
【解決手段】水電解システム10は、純水を電気分解することによって高圧水素を製造する水電解装置12と、前記水を前記水電解装置12に循環させる水循環装置14と、前記水電解装置12から排出される前記酸素及び高圧水素を、前記水循環装置14内の水から分離する気液分離装置16と、前記気液分離装置16に貯留される前記水を、前記水電解装置12に循環させる水循環装置14と、前記気液分離装置16に希釈用エアを供給するエア供給装置90とを備え、これらが筐体22に収容される。エア供給装置90は、水電解装置12で発生する熱を回収する熱回収機能と、前記熱を希釈用エアに伴って気液分離装置16に供給する送風機能とを兼用する単一のエアブロア92を備える。 (もっと読む)




【課題】エネルギ損失を有効に削減することができ、システム効率を確実に向上させることを可能にする。
【解決手段】水電解システム10は、水を電気分解し、水素と酸素とを発生させる水電解装置14と、前記水電解装置14から前記水素を排出する水素導出路16の下流に接続され、排出された前記水素を冷却する冷却器20と、冷却された前記水素中の水を吸着する水吸着筒22と、前記水吸着筒22の下流に配置され、前記水素導出路16から排出される前記水素を、常圧よりも高圧に維持する背圧弁24と、前記水電解装置14と前記冷却器20との間に配置され、前記背圧弁24から放出される前記水素と前記水電解装置14から排出される前記水素との間で熱交換を行う気液分離器18とを備える。 (もっと読む)


1 - 20 / 131