説明

Fターム[4K029AA09]の内容

物理蒸着 (93,067) | 基体 (14,066) | 材質 (8,002) | 無機質材 (4,917) | ガラス (2,160)

Fターム[4K029AA09]に分類される特許

201 - 220 / 2,160


【課題】種々の多数の基板に対して真空蒸着法による成膜を効率良く行う技術を提供する。
【解決手段】本発明は、真空槽2内において、第1及び第2のマスク31、32を介して第1及び第2の基板51、52上に蒸着を行う真空蒸着装置である。本発明は、第1及び第2の基板51、52を保持する保持手段80と、第1及び第2のマスク31、32をそれぞれ支持するマスク支持部17、18と、マスク支持部17、18を非接触の状態でそれぞれ位置合わせを行う第1及び第2のXYθステージ15、16とを有する。第1及び第2のXYθステージ15、16は、コ字形状に形成され、第1及び第2のXYθステージ15、16の端部がそれぞれ対向するように配置されている。 (もっと読む)


【課題】電界効果型トランジスタに関する新規な製造方法を提供する。
【解決手段】基板上に、非晶質酸化物層を形成する前に、基板表面にオゾン雰囲気中で紫外線を照射したり、基板表面にプラズマを照射したり、あるいは基板表面を過酸化水素を含有する薬液により洗浄する。または、非晶質酸化物を含み構成される活性層を形成する工程をオゾンガス、窒素酸化物ガス等の少なくともいずれかを含む雰囲気中で行う。または、基板上に、非晶質酸化物層を形成する後に、非晶質酸化物層の成膜温度よりも高い温度で熱処理する工程を含む。 (もっと読む)


【課題】光散乱効果を持つZnO系膜を高い成膜速度で成膜できる生産性のよい成膜方法を提供する。
【解決手段】本発明では、成膜室1内に処理すべき基板WとZnOを主成分とするターゲット31とを配置し、真空雰囲気の成膜室1内に希ガス等のスパッタガスを導入し、ターゲット31に所定電力を投入し、プラズマ雰囲気を形成してターゲットをスパッタリングすることで、基板W表面にZnOを主成分とする薄膜を成膜する。スパッタリングによる成膜中、前記プラズマに基板Wが曝されるようにし、成膜室1内の圧力を2Pa未満に保持する。 (もっと読む)


【課題】ホスト材料とゲスト材料とを同時蒸着させる蒸着装置において、微量のゲスト材料を精度良く蒸着させるとともに、蒸着材料のロスを抑制する。
【解決手段】真空処理室201内において、基板100に対して蒸着材料を蒸着させて薄膜を形成する真空蒸着装置200であって、内部に収容された蒸着材料を加熱し、発生した蒸着材料の蒸気を放出口204aから基板100へ向けて放出する第2蒸着源204と、第2蒸着源204に連結され、第2蒸着源204の内部で発生した蒸着材料の蒸気を導く導管220と、導管220を流れる蒸着材料の蒸気の流量を制御する流量制御バルブ221と、導管220を介して第2蒸着源204に連結されて、第2蒸着源204の内部で発生した蒸着材料の蒸気を回収する回収容器230と、を備える。 (もっと読む)


【課題】搬送される基板に対して、均一に共蒸着することのできる蒸着装置を提供する。
【解決手段】真空容器1内で基板K上に薄膜を蒸着形成する蒸着装置10において、真空容器1内に、基板Kを搬送する搬送手段2と、基板Kの搬送方向と直交する直交方向に延在するよう搬送方向に沿って並んで配され、基板Kに対して成膜材料を蒸気として噴出する線状蒸着源3A,3Bと、搬送方向に沿って並んで配され、基板Kに対して線状蒸着源3A,3Bから噴出される成膜材料より低濃度な成膜材料を蒸気として噴出する複数の点状蒸着源部4A,4Bと、を備え、線状蒸着源3A,3Bと、複数の点状蒸着源部4A,4Bと、から噴出された蒸気により共蒸着が行われることを特徴とする。 (もっと読む)


【課題】搬送される基板に対して、ホスト材料とゲスト材料とを同時蒸着させる蒸着装置において、微量のゲスト材料を蒸着させる場合であっても精度良く成膜を行う。
【解決手段】搬送される基板100に対して薄膜を形成する真空蒸着装置200であって、基板100に対向して搬送方向Aに直交する幅方向に延在し、第1蒸着材料を放出する第1蒸着源203と、基板100に対向して搬送方向Aに直交する幅方向に延在し、第1蒸着源203に対して搬送方向Aにずれて配置され、第1蒸着材料に重なり合うように第2蒸着材料を放出する第2蒸着源204と、搬送方向Aに沿って配列された複数の羽板部材207aと、を備え、複数の羽板部材207aは、放出された第2蒸着材料の進行方向に対して傾斜し、且つ、放出された第1蒸着材料の進行方向に対して平行となるように設けられている。 (もっと読む)


【課題】搬送される基板に対して、ホスト材料とゲスト材料とを同時蒸着させる蒸着装置において、微量のゲスト材料を蒸着させる場合であっても精度良く成膜を行う。
【解決手段】搬送される基板100に対して薄膜を形成する真空蒸着装置200であって、基板100に対向して搬送方向Aに直交する幅方向に延在し、第1蒸着材料を放出する第1蒸着源203と、搬送方向Aに直交する幅方向に延在し、第1蒸着源203に対して搬送方向Aにずれて配置され、放出された第1蒸着材料に重なり合うように第2蒸着材料を放出する第2蒸着源204と、第2蒸着源204が延在する方向と同一の方向に延在し、放出された第2蒸着材料に重なる位置であって、放出された第1蒸着材料に重ならない位置に設けられた遮蔽部材230と、を備え、遮蔽部材230は、放出された第2蒸着材料の一部を通過する開口部231を有する。 (もっと読む)


【課題】Gaを含まないIn−Zn−Oの酸化物半導体を備えた薄膜トランジスタのスイッチング特性およびストレス耐性が良好であり、特に正バイアスストレス印加前後のしきい値電圧変化量が小さく安定性に優れた薄膜トランジスタ半導体層用酸化物を提供する。
【解決手段】Inと;Znと;Al、Si、Ta、Ti、La、Mg、およびNbよりなる群から選択される少なくとも一種の元素(X群元素)と、を含む薄膜トランジスタの半導体層用酸化物である。 (もっと読む)


【課題】 一般的な基材であるガラスに成膜され、且つ良好なパターン形状と優れた発光特性の両方を兼ね備えた薄膜蛍光体及びその製造方法を提供すること。
【解決手段】 基材と結晶性の薄膜蛍光体からなり、前記薄膜蛍光体は、前記基材上に成膜されて薄膜蛍光体層が形成されており、前記薄膜蛍光体層にパターンが形成されており、前記結晶がナノ構造であることを特徴とするパターン形成された薄膜蛍光体とする。 (もっと読む)


【課題】Cu配線層に含まれるCuの周囲への拡散を抑制すると共に密着性および動作特性に優れた半導体装置およびその製造方法、並びに、その半導体装置の製造に用いるスパッタリングターゲットを提供する。
【解決手段】実施の形態に係るスパッタリングターゲットは、1.5原子%以上5.0原子%以下のMnと、(Mgの原子%)/(Mnの原子%)で示される比率が0.3以上2.1以下となるMgと、10wtppm以下のCと、2wtppm以下のOと、を含むCu合金を用いて形成される。 (もっと読む)


【課題】スパッタリングターゲットに用いた場合に異常放電の発生を抑制し、生産効率の優れた比抵抗の小さな透明電極を得ることが出来る程度に緻密な酸化亜鉛系焼結体を提供する。
【解決手段】実質的に亜鉛、チタンおよび酸素からなり、相対密度が95%以上で、かつ結晶相が酸化亜鉛相、導電性複合酸化物相および低原子価化チタン相からなる酸化亜鉛系焼結体であり、酸化チタン粉と酸化亜鉛粉または水酸化亜鉛粉との混合粉、および/またはチタン酸亜鉛化合物粉を含む原料粉末を成形し、次いで還元雰囲気または不活性雰囲気中600〜1500℃の温度で焼結を行うことによって得られる。 (もっと読む)


【課題】ビットパターンを高密度に集積した場合にも,熱安定性と記録性に優れ,ビットパターンのトラック周期よりも広い記録素子及び再生素子の磁気ヘッドを用いることができるようにする。
【解決手段】円錐台状の記録ビットの下層に垂直磁気異方性の大きい熱安定層を,上層に飽和磁束密度の大きい高出力層を備える。外周部は高出力層を除去して熱安定性を向上した熱安定性領域22とし,中心部は再生領域21とする。また,外周部と中心部の間に垂直磁気異方性と飽和磁束密度を小さくした反転制御領域23を設ける。 (もっと読む)


【課題】有機ELディスプレイの生産性を高めるため、高い成膜速度で長時間安定に成膜作業を実施し、かつ均一な膜厚分布を達成する。
【解決手段】成膜室内で、昇華又は蒸発した成膜材料を基板Wに成膜する成膜装置において、加熱機構11を備えた複数の材料収容部10と、成膜材料を基板Wに向けて放出させる放出口13との間に、連結空間14を配置する。複数の材料収容部10を用いることで高い成膜速度を得るとともに、各材料収容部10から昇華又は蒸発した成膜材料を連結空間14において混合し、均一な膜厚分布を実現する蒸気として複数の放出口13から基板Wに向かって放出する。 (もっと読む)


【課題】 物理的膜厚dを均一にするだけでなく屈折率nも均一にした光学素子(OE)を提供する。
【解決手段】 第1の観点による光学素子(OE)は、基板を真空チャンバー内に配設し、基板保持部が有する複数の保持枠に基板を保持させ、基板を中央部から周辺部にかけて均一に加熱し、中央部から周辺部にかけて基板を均一に加熱している状態において蒸着源から蒸着材料を放出し、基板に蒸着材料を蒸着する光学薄膜成膜方法によって成膜された光学薄膜を含む光学素子である。そして光学薄膜の光学膜厚ndは、光学素子の中央部から周辺部の表面にかけて形成され、周辺部の光学膜厚ndと中央部の光学膜厚ndとが、均一である。なお、光学膜厚ndは、屈折率n×物理的膜厚dである。 (もっと読む)


【課題】酸化亜鉛系薄膜をパターニングする際のエッチングレートが充分に低く、エッチングレートを容易かつ確実に制御することが可能であり、良好なパターン形状を有するとともに導電性も高い酸化亜鉛系薄膜を得ることができるパターニング方法を提供する。
【解決手段】本発明のパターニング方法は、酸化亜鉛系薄膜を酸によりエッチングしてパターニングする方法であって、前記酸化亜鉛系薄膜が、酸化亜鉛を主成分とし、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下の薄膜である。前記酸化亜鉛系薄膜は、実質的に亜鉛、チタンおよび酸素からなる酸化物焼結体または酸化物混合体を加工して得られるターゲットを膜形成材料として成膜されたものであることが好ましい。 (もっと読む)


【課題】 良好な膜質の薄膜を形成することができる成膜装置の提供。
【解決手段】
ターゲット11を保持するターゲットホルダ10と、ターゲットホルダ10を回転可能な回転機構80と、成膜用基板21を保持する基板ホルダ20と、電子線を発生する電子線発生装置30と、電子線収束装置40と、レーザ光照射装置50とを備えた回転ターゲット式成膜装置である。電子線収束装置40は、回転機構80により回転するターゲット11に対して、電子レンズを形成することにより電子線発生装置30から発生された電子線を収束させ、もってターゲット11の少なくとも一部を液体化する。レーザ光照射装置50は、液体化されたターゲット11の少なくとも一部にレーザ光を照射してアブレーションを行う。 (もっと読む)


【課題】実用に耐えうる導電性を保ちながら、かつ耐候性を備え、パターニングの際に適当なエッチングレートを有する透明導電膜を成膜するためのターゲットに用いることができる酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を越え0.1以下であり、酸化亜鉛を主成分とし、ガリウムおよびアルミニウムのうち少なくとも一方の酸化物と、酸化チタンとを含み、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.5%以上6%以下であり、かつ前記酸化チタンが、式TiO2-X(X=0.1〜1)で表される低原子価酸化チタンである酸化物混合体または酸化物焼結体からなることを特徴とする酸化亜鉛系透明導電膜形成材料。 (もっと読む)


【課題】実用に耐えうる導電性を保ちながら、かつ耐候性を備え、パターニングの際に適当なエッチングレートを有する透明導電膜を成膜するためのターゲットに用いることができる酸化亜鉛系透明導電膜形成材料の製造方法を提供する。
【解決手段】酸化亜鉛を主成分とし、酸化チタンを含む酸化亜鉛系透明導電膜形成材料であり、チタンの原子数の全金属原子数に対する割合が2%超10%以下であり、かつチタン源として、原子価が4価であるチタン元素を用いて、還元性雰囲気中にて加圧焼結して作製された酸化物焼結体である。 (もっと読む)


【課題】実用に耐えうる導電性を保ちながら、かつ耐候性、耐熱性等の化学的耐久性を備え、パターニングの際に適当なエッチングレートを有する透明導電膜を成膜するためのターゲットに用いることができる酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】本発明の透明導電膜形成材料は、酸化亜鉛を主成分とし、フッ化ガリウムおよびフッ化アルミニウムのうち少なくとも一方を含み、さらにチタンを含む酸化亜鉛系透明導電膜形成材料であり、全金属原子数に対するチタンの原子数の割合が2%超10%以下であり、全金属原子数に対するフッ化ガリウムおよびフッ化アルミニウムの一方または両方の金属原子数の割合が0.1%以上5%以下であり、かつチタン源として、一般式:TiO2-X(X=0.1〜1)で表される低原子価酸化チタンを用いた酸化物焼結体である。 (もっと読む)


【課題】厚み方向にGaのダブルグレーデッド構造を有し、かつ面内均一性を有するCIGS膜を効率的に製造する。
【解決手段】膜用基板を一方向に搬送する基板搬送機構16を備え、成膜用基板Sの搬送方向Aに沿って最上流に、In蒸着源21とGa蒸着源22とが交互に配置されてなる行列状のIn-Ga第1蒸着源群31を配置し、制御部15により、搬送方向Aの最上流と最下流との間にGa/(In+Ga)比が最小、かつその最小のGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、各蒸着源21〜23、25からの蒸発量を制御する。 (もっと読む)


201 - 220 / 2,160