説明

Fターム[4K029BD02]の内容

物理蒸着 (93,067) | 被膜の用途 (4,612) | 半導体装置 (1,485) | リードフレーム、配線材料 (490)

Fターム[4K029BD02]に分類される特許

201 - 220 / 490


プラズマプロセスチェンバーにおいてウェーハレベルアークを検出するための方法と装置。方法は、例えば、プラズマプロセスチェンバーに供給された信号の波形を監視することと、波形中の特徴を検出することと、特徴を検出したことに応答して、波形が特徴の後で安定化したかどうかを決定することと、波形が安定化したことに応答して、特徴が双方向波形異常の一部であるかまたは一方向波形遷移であるかを決定することと、特徴が双方向波形異常の一部であることの指標かまたは特徴が一方向波形遷移であることの指標のどちらかを、コンピューター読み取り可能な媒体に記録することと、を含む。
(もっと読む)


【課題】配線のエレクトロマイグレーション耐性を向上させる。
【解決手段】Al配線40を形成する際、バリアメタル41上に、Al粒子40aが第1の平均粒径となるように第1の条件で第1のAl膜を形成し、次いで、第1の平均粒径より小さい第2の平均粒径となるように第2の条件で第2のAl膜を形成する。その後、第2のAl膜上にバリアメタル42を形成し、形成後、バリアメタル41,42および第1,第2のAl膜を配線パターンに加工する。
【選択図】図9
(もっと読む)


【課題】低温での熱処理を適用した場合でも十分に低い電気抵抗率を示すと共に、直接接続された透明画素電極とのコンタクト抵抗が十分に低減され、かつ耐食性に優れた表示装置用Al合金膜を提供する。
【解決手段】表示装置の基板上で、透明導電膜と直接接続されるAl合金膜であって、該Al合金膜は、Coを0.05〜0.5原子%、およびGeを0.2〜1.0原子%含み、かつAl合金膜中のCo量とGe量が下記式(1)を満たすことを特徴とする表示装置用Al合金膜。
[Ge]≧−0.25×[Co]+0.2 …(1)
(式(1)中、[Ge]はAl合金膜中のGe量(原子%)、[Co]はAl合金膜中のCo量(原子%)を示す) (もっと読む)


【課題】コンタクトホールやスルーホール、配線溝等の内壁面に対して、膜厚や膜質などの点で高い膜性能を確保した成膜を行い得るパルス状直流スパッタ成膜方法及びこの方法のための成膜装置を提供する。
【解決手段】ターゲット6に対してパルス状の直流電力を印加するスパッタ成膜方法において、あらかじめ、化合物種たる反応ガスを導入可能とすると共に前記パルス状直流電力の平均電力を一定に保ったまま該パルス状電力のデューティ比を可変とし、前記反応ガスを所定流量で導入した状態で、前記デューティ比を変化させて、基板7に形成される金属化合物薄膜の組成比を異ならせる。 (もっと読む)


【要 約】
【課題】酸素含有量が均一なバリア膜を形成する。
【解決手段】本発明のターゲット111は酸素と銅とを含有している。当該ターゲット111をスパッタリングして形成されるバリア膜25は、原子組成がターゲット111と略等しくなるので、バリア膜25中の酸素含有量を厳密に制御することが可能であり、しかも、バリア膜25中の酸素の面内分布が均一になる。酸素と銅を含有するバリア膜25はシリコン層やガラス基板への密着性が高い上に、シリコン層へ銅が拡散しないから、薄膜トランジスタ20の、ガラス基板やシリコン層に密着する電極に適している。 (もっと読む)


【課題】例えば、スパッタリング法を用いて薄膜を形成する際の生産性を向上させる。
【解決手段】形成すべき一方の薄膜が、Al/Nd薄膜である場合には、出力パワーは、5.0〜30.0W/cm□に設定され、チャンバ内の圧力は、0.1〜1.0Paに設定される(スパッタ条件A)。続く、スパッタ条件A下で薄膜を形成する際、Arガスのプラズマ及びAlイオンが第1ターゲット部材(91)及び第2ターゲット部材(92)の両方に衝突し、Al原子及びNd原子の夫々がターゲット(3)から叩き出され、基板に付着する。これにより、基板にAl/Nd合金からなる薄膜が形成される。一方、形成すべき一方の薄膜が、Al薄膜である場合には、出力パワーは、2.0〜5.0W/cm□に設定され、チャンバ内の圧力は、1.0〜2.0Paに設定される(スパッタ条件B)。 (もっと読む)


【課題】装置の高いスループットを維持しつつ、バリアメタルの酸化工程の追加や異なる種類のシード層の積層、バリア層の積層等を行い配線の信頼性を向上させる。
【解決手段】薄膜の合金シード層を成長させるチャンバー、または、薄膜のバリアメタルを成長させるチャンバーのうち、最も短いタクト時間のチャンバー数を最も少なくして、あるいは、統一して1台の装置で専用に用い、タクト時間の長い工程のチャンバーを2または、3チャンバー以上にすることにより、薄膜工程のチャンバー間バラツキを無くして、装置のスループットを向上させる。 (もっと読む)


【課題】端部同士が接続された複数の薄膜パターンを形成した際、その上方に大きな段差を発生させることのない固体装置、有機EL装置、およびそれらの製造方法を提供すること。
【解決手段】トップエミッションタイプの有機EL装置100の補助配線層84を形成するにあたっては、第1マスク蒸着工程において、補助配線層84を形成するための第1薄膜パターン84aを形成した後、第2マスク蒸着工程において、補助配線層84を形成するための第2薄膜パターン84bを端部841a、841b同士が平面視で重なるように蒸着し、第1薄膜パターン84aと第2薄膜パターン84bとが繋げる。第1薄膜パターン84aおよび第2薄膜パターン84bは、端部841aに向けて膜厚が漸減しているため、端部841a、841b同士の重なり部分84eに大きな段差が発生しない。 (もっと読む)


【課題】スパッタリング時の窒化反応に依存せずに、ターゲットそのものが、バリア膜と同一成分となるように、かつ半導体デバイスの反応を効果的に防止でき、さらに、スパッタリング時にパーティクルの発生のない、例えばバリア膜用として、最適なスパッタリングターゲット、同ターゲットの製造方法及び同バリア膜を備えた半導体デバイスを提供する。
【解決手段】TaxSiyBz(65≦x≦75、15≦y≦25、5≦z≦15)の組成を有するTa、Ta珪化物、Taホウ化物からなる焼結体スパッタリングターゲット、及びTa粉、Ta珪化物粉及びTaホウ化物粉を、TaxSiyBz(65≦x≦75、15≦y≦25、5≦z≦15)の配合比となるように混合し、これを10〜50MPaの加圧力、1700〜2000°Cでホットプレスにより焼結することを特徴とするスパッタリングターゲットの製造方法。 (もっと読む)


【課題】両面フレキシブル配線基板の狭ピッチ配線が可能な、真空成膜による工程を経て製造される長尺樹脂フィルムの両面に金属膜を積層した基板の製造方法と製造装置を提供することにある。
【解決手段】長尺樹脂フィルムの両面に金属薄膜を真空成膜して長尺樹脂フィルムの両面に金属薄膜を積層させた基板の製造方法において、長尺樹脂フィルムの両面に金属薄膜を真空成膜した後に、該金属薄膜のうち少なくとも一方の金属薄膜の表面に有機物液体膜を形成し、金属薄膜積層基板を巻き取ることを特徴とする基板の成膜方法を用いる。 (もっと読む)


【課題】半導体ウェーハの電気的特性を高精度かつ簡便に評価し得る手段を提供する。
【解決手段】ウエーハ面上に蒸着パターンを形成するための蒸着用マスク。少なくとも1つの貫通孔1を有する厚みが1μm以上50μm以下のマスク層1を有し、上記マスク層1上に、該マスク層1が有する貫通孔1を塞ぐことなく磁性マスク2を有する。上記蒸着用マスクを使用する蒸着パターン作製方法。前記マスクを使用する半導体ウェーハ評価用試料の作製方法。前記方法によって半導体ウェーハ表面上に金属パターンを作製し、作製された金属パターンを介して半導体ウェーハの電気的特性を測定する半導体ウェーハの評価方法。前記評価方法を使用する半導体ウェーハの製造方法。 (もっと読む)


【課題】基板に形成されたホールの内部にスパッタリングにより成膜した貴金属膜の厚みを、ホールの両サイドで対称なものとすることができ、したがって、貴金属膜に断線等の不具合が生じる虞がなく、信頼性をより向上させることができる貴金属膜の成膜装置及び貴金属膜の成膜方法を提供する。
【解決手段】本発明の貴金属膜の成膜装置は、基板23に形成されたホールの内部に貴金属膜をスパッタリングにより成膜する装置であり、ターゲット24と、このターゲット24に対向配置されるステージ22と、ターゲット24にスパッタリング電力P(W)を印加する電源26とを備え、ターゲットの直径Tと、ターゲット24とステージ22上の基板23との距離Lとの比L/Tを、0.5以上かつ1.5以下の範囲で変更可能とした。 (もっと読む)


【課題】 基板ホルダーが移動しても、整合状態が大きく変化することなく、インピーダンスの整合状態が維持されることを課題とする。
【解決手段】上記課題を解決するため、本願に係わる基板処理装置は、処理チャンバー、前記処理チャンバー内に位置し、基板を保持するための基板ホルダー、前記基板ホルダーに高周波電力を供給するための高周波電源、前記基板ホルダーと前記高周波電源との電気的に間に位置する整合器及び前記基板ホルダーと前記整合器を一体に移動させる移動機構を有する構成とする。 (もっと読む)


【課題】微細な開口部、かつ高アスペクト比を持つトレンチ又はホール内を金属材料で埋め込む方法の提供。
【解決手段】円筒状トリガ電極13と蒸発材料部材12aを有する円柱状カソード電極12とが、円筒状絶縁碍子15を介して同軸状に隣接して固定されて配置され、カソード電極の周りに同軸状にアノード電極11が離間して配置されている同軸型真空アーク蒸着源1を用い、トリガ電極とカソード電極との間にトリガ放電を発生させ、カソード電極とアノード電極との間に間欠的にアーク放電を誘起させ、蒸発材料部材から生成される荷電粒子を真空チャンバー内に放出させ、トレンチ又はホール内へ金属材料を埋め込む。 (もっと読む)


【課題】スパッタリング膜の成膜レートを低下させずに、ターゲットのスパッタリング時に生じるターゲット材料の凝集を適切かつ容易に抑制できるスパッタリング装置を提供する。
【解決手段】スパッタリング装置100は、基板34Bおよびターゲット35Bを格納する真空成膜室30と、カソードユニット41を有して、カソードユニット41およびアノードA間の放電により、真空成膜室30内にプラズマ27を形成可能なプラズマガン40と、プラズマガン40に電力を供給するプラズマガン電源50と、ターゲット35Bにバイアス電圧を印加するバイアス電源52と、を備え、プラズマ27中の荷電粒子によりスパッタリングされたターゲット35Bの材料が基板34Bにおいて凝集を起こさないよう、プラズマの放電電流IDがプラズマガン電源50を用いて調整され、かつ、バイアス電圧VBがバイアス電源52を用いて調整されている。 (もっと読む)


【課題】Al−Cu合金内においてCu(溶質元素)を均一に分散させ、かつ、析出するCuの粒子をより微細にするための均質化方法を提供する。
【解決手段】Al−Cu合金に対して、200℃以上、350℃以下の温度で4〜14時間加熱した後、冷却する均質化処理を行う。Al−Cu合金からスパッタリングターゲットを製造する場合には、Al−Cu合金(スラブ)を熱処理炉に入れて、本発明に係る均質化処理を施した後、一対の圧延ローラ10・10を備えた圧延機を用いて当該Al−Cu合金に圧延処理(冷間圧延)を行って圧延板に加工する。次いで、当該圧延板を熱処理炉に入れて再加熱処理(焼き鈍し処理・歪み取り処理)を施して目的の圧延板を形成した後、打ち抜き加工等を施して、円盤状のスパッタリングターゲット11…を製造する。 (もっと読む)


【課題】
永久磁石による反発磁界の幅を狭めることなく、シートプラズマの傾きを調整できるシートプラズマ成膜装置を提供する。
【解決手段】
本発明に係るシートプラズマ成膜装置1は、円柱状のプラズマPを出射するプラズマガン2と、円柱状のプラズマPを挟んでN極の磁極面が対向するように配置された一対の永久磁石7A、7Bで構成され、円柱状のプラズマPをシート状に変形させる永久磁石対7と、少なくとも一方の永久磁石7A、7BのプラズマPに対向する面に配置され、かつ、一対の永久磁石7A、7Bの対向方向(Y方向)からみて円柱状のプラズマPの中心軸Tに対し非対称に配置された磁性部材8と、シート状のプラズマPを利用して成膜が行われる成膜室9と、を備えている。 (もっと読む)


複数のパルスで陽極とターゲット間に電力を印加することによってTaN層(4)を被着し、ターゲットから基板(2)へ反応的にTaをスパッタしてTaNシード層(4)を形成する方法から成る。Ta層(5)は複数のパルスにおける電力を印加すると共に、前記基板(2)を支持するペデスタルに高い周波数信号を印加することによって前記TaNシード層(4)の上に被着され、前記基板(2)に隣接した自己バイアス場を生成する金属化構造体(1)を被着する方法。
(もっと読む)


【課題】配向した窒化タンタル膜が配された電子デバイス用基板及びその製造方法を提供する。
【解決手段】被成膜面1aが(111)配向したシリコンからなる基材1と、Taからなるターゲットと、Ar及びN2からなるプロセスガスとを用いて反応性スパッタリングを行うと、基材1の前記被成膜面1a上に、少なくとも(100)配向した窒化タンタル膜が形成される。前記のことから(100)配向した窒化タンタル膜から構成された電子デバイス用の(111)配向した基板10を提案する。 (もっと読む)


【課題】良好なペロブスカイト型の強誘電体膜を形成する。
【解決手段】本発明の強誘電体メモリ素子の製造方法は、基板の上方に、酸化イリジウム層を形成する工程と、酸化イリジウム層上に、ペロブスカイト型の導電性酸化物からなり、第1電極33aの最上層となる酸化物電極層332aを形成する工程と、酸化物電極層332a上に強誘電体膜34aを形成する工程と、強誘電体膜上に第2電極35aを形成する工程と、を有する。酸化物電極層を形成する工程は、導電性酸化物の金属成分を含有した有機金属材料と酸素とを供給しかつ化学反応させるとともに、その生成物を成膜する成膜プロセスを含む。成膜プロセスは、供給する有機金属材料を化学反応させるのに必要な量未満の酸素を供給して成膜する低酸素処理と、その後に化学反応させるのに必要な量以上の酸素を供給して成膜する高酸素処理と、を含む。 (もっと読む)


201 - 220 / 490