説明

Fターム[4K029DB10]の内容

物理蒸着 (93,067) | 蒸着装置 (6,894) | 蒸発材、蒸発物質 (2,872) | 形状 (495) | 粉、粒 (149)

Fターム[4K029DB10]に分類される特許

61 - 80 / 149


粒子材料を計量し、気化するための装置190が、粒子材料を計量するための計量デバイスであって、粒子材料を受け取るための貯蔵室230と、内部容積250を有し、第1の開口部及び第2の開口部を有するハウジング240と、内部容積内に配置され、滑らかな表面と外周溝とを有する回転可能シャフト270と、貯蔵室内に配置され、粒子材料を流動化して該材料を貯蔵室から溝内に移送するために回転可能シャフトと協働する送達する構造とを備え、シャフト及び内部容積は、粒子材料が溝によって移送されるように協働し、スクレーパーが、その中に保持される粒子材料を取り除き、擦り取られた粒子材料を流動化し、計量された量の粒子材料を第2の開口部を通して送達するために溝と協働する、計量デバイスと、計量された粒子材料を受け取り、フラッシュ蒸発させるフラッシュ蒸発器210とを備える。
(もっと読む)


【課題】ルツボの有機材料への水分の混入を抑えるとともに、成膜時の成膜レートや圧力等の安定性を向上させる。
【解決手段】成膜室2の前段に設けられた材料前処理室1において、ルツボ4にて昇華精製された有機材料を前処理ヒーター6によって加熱し、水分量を低減した環境で溶融して固化させる。この材料前処理工程で、ルツボ4の有機材料から水分を除去するとともに、有機材料の材料充填率を高めて、成膜室2における成膜の安定性を向上させる。 (もっと読む)


【解決課題】真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法、並びに蒸着膜の製造方法を提供すること。
【解決手段】Taをアーク溶解し、その後、凝固物を得るI工程と、該凝固物を真空雰囲気下で電子ビーム溶解法によって溶解して酸化タンタル蒸着材を得るII工程と、を有する酸化タンタル蒸着材の製造方法。 (もっと読む)


【課題】真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法、並びに蒸着膜の製造方法を提供すること。
【解決手段】Taを1200℃以上で焼成するI工程と、I工程で得られた焼結体を真空雰囲気下で電子ビーム溶解法によって溶解して酸化タンタル蒸着材を得るII工程、を有する酸化タンタル蒸着材の製造方法。 (もっと読む)


【課題】 固まり状の粉末を排出させない粉末供給装置を提供する。
【解決手段】 粉末供給装置は、回転可能な攪拌羽根8と粉末落下孔7Sが備えられた粉末収容室7、粉末落下孔7Sに対向する箇所を含む円周上に溝11´が設けられた粉末供給盤12´、粉末落下孔7Sに対向する箇所以外の溝内の箇所にその先端部が挿入された粉末吸引パイプ23を備えており、粉末吸引パイプ23の先端部が挿入された溝11´内の箇所の少なくとも一部にキャリアガスが吹き付けられる様に成してある。 (もっと読む)


【課題】結晶性を向上するAlN結晶の製造方法、AlN基板の製造方法および圧電振動子の製造方法を提供する。
【解決手段】AlN結晶10の製造方法は、AlN下地基板11を準備する工程と、AlN下地基板11上にAlN結晶10を成長する工程と、AlN結晶10からAlN下地基板11を分離する工程とを備えている。AlN下地基板11およびAlN結晶10の一方は、280nm以下の波長の光に対して吸収係数が100cm-1以上である。AlN下地基板11およびAlN結晶10の他方は、220nm以上280nm以下の波長の少なくとも一部の波長域の光に対して吸収係数が100cm-1未満である。上記分離する工程では、AlN下地基板11およびAlN結晶10のうち吸収係数が低い他方側から光を照射する。 (もっと読む)


本発明は、基材上に蒸着されたメラムの、高湿度に対する耐性が求められる用途(レトルト処理もしくは金属堆積を含むさらなる処理等)または太陽電池やディスプレイ等の用途における使用に関する。バリア層のメラム対メラミン比(w/w)は、3:1〜50:1の範囲にある。レトルト耐性を有する積層体は、2枚のプラスチックフィルムとその間に結晶性メラム層とを有し、積層体の、90°引張試験で30mm/分で測定されたラミネート強度は約2N/インチ以上である。 (もっと読む)


【課題】高融点の金属材料または非昇華性材料からなる蒸着性材料からなる薄膜を被成膜体に対して安定して形成することが可能な真空成膜装置を提供する。
【解決手段】真空成膜装置10は、被成膜体13が配置された真空チャンバー12と、蒸着性材料20を収納するるつぼ19と、プラズマビーム22をるつぼ19内の蒸着性材料20に向けて照射する圧力勾配型プラズマガン11とを備えている。るつぼ19に、蒸着性材料20を150℃乃至2000℃の範囲内で加熱できる加熱機構40が設けられ、るつぼ19近傍に、るつぼ19内に蒸着性材料20を供給する材料供給装置50が設られている。プラズマビーム22を蒸着性材料20の表面に導き、真空チャンバー12内の被成膜体13上に薄膜20aを形成する。 (もっと読む)


形成されたフィルム形態をナノ粒子塊のものから粒子およびドロップレットの無い平滑な薄膜に連続的に調整することが可能なパルスレーザー蒸着(PLD)の方法。発明の様々な実施形態を使って合成されることができる材料は、金属、合金、酸化金属および半導体を含むが、それらに限定はされない。様々な実施形態において、超短パルスレーザーアブレーションおよび蒸着の「バースト」モードが提供される。フィルム形態の調整は、各バースト内のパルス数およびパルス間の時間間隔、バースト繰り返しレート、およびレーザーフルエンスのようなバーストモードパラメータを制御することによって達成される。システムは、超短パルスレーザーと、適切なエネルギー密度でターゲット表面上にフォーカスされたレーザーを配送するための光学システムと、その中にターゲットおよび基板が設置され背景ガスとそれらの圧力が適切に調節された真空チェンバーと、を含む。
(もっと読む)


【課題】酸素、水蒸気のガスバリア性が優れた積層フィルムを提供すること。
【解決手段】 高分子樹脂組成物からなる基材に無機薄膜蒸着層を設けられ、かつ高分子樹脂組成物の反対面の無機薄膜蒸着層上にキシリレン基または水添キシリレン基含有ウレタン樹脂を含む被覆層が積層され、かつ被覆層の厚みが0.01〜0.50μmであることを特徴とする積層フィルム。 (もっと読む)


【課題】コストと、得られるZnO単結晶の大きさと、単結晶の品質との間の最適な妥協点を達成でき、同時に最も低いコストで最も優れた大きさと品質とが得られる、ZnO単結晶を調製するための方法が必要とされている。
【解決手段】多結晶または単結晶酸化亜鉛ZnOを制御雰囲気下にてエンクロージャに配置されたシード上に調製する方法であって、エンクロージャ内部にあり、シードとは離れたるつぼ中に配置された酸化亜鉛供給源の昇華により、ガス種を形成し、ガス種を輸送し、ガス種をシード上で凝結させ、シード表面にてZnOを再結合させ、多結晶または単結晶ZnOをシード上で成長させ、多結晶または単結晶ZnOを冷却することにより調製するための方法であり、ここで:
−酸化亜鉛供給源は、2.10−3気圧〜0.9気圧の圧力下にて、温度、いわゆる900〜1,400℃のいわゆる昇華温度に誘導により加熱される;
−COは、エンクロージャ内部に配置された固体炭素供給源上の少なくとも1つの酸化種または酸化種および少なくとも1つの不活性ガスの混合物を提供することによって昇華活性化剤としてインサイチュで発生させる;
−および、ZnOの化学量論の制御は、例えば、ZnOの成長界面の近位にて少なくとも1つの酸化種、または少なくとも1つの酸化種および少なくとも1つの不活性ガスの混合物の1SCCM〜100SCCMの量にて、制御された流速にて局在化した供給を達成することにより行われる、方法。
この方法を行うためのデバイス。 (もっと読む)


【解決課題】真空蒸着の際に、真空蒸着装置の真空度が落ち難く、且つ、スプラッシュ量が少ない酸化タンタル蒸着材およびその製造方法を提供すること。
【解決手段】Ta相とTaO相とを含有する酸化タンタル蒸着材。Taを、真空雰囲気下で電子ビーム溶解法によって溶解して、酸化タンタル蒸着材を得ることを特徴とする酸化タンタル蒸着材の製造方法。 (もっと読む)


【課題】真空蒸着の際に、スプラッシュ量が少ない金属酸化物蒸着材およびその製造方法を提供する。
【解決手段】酸化タンタルまたは酸化ニオブの粉末またはペレットを、真空雰囲気下または不活性ガス雰囲気下で、電子ビーム溶解法またはアーク溶解法により溶解し、次いで、粉砕および篩別する。そして粒径0.5mm以上の金属酸化物粉末と、粒径0.5mm未満の金属酸化物粉末を混合し、粒径0.5mm未満の金属酸化物粉の含有量が15質量%以下となるように調整した金属酸化物蒸着材。 (もっと読む)


【課題】繰返し膜を形成する場合であっても、膜質が高い膜を形成することができるとともに、フィルタに付着した異物を容易に除去できる真空蒸着装置および真空蒸着方法を提供する。
【解決手段】本発明の真空蒸着装置は、真空容器内で蒸着により基板の表面に膜を形成するものであって、真空容器内を排気する真空排気手段と、真空容器内の上部に設けられ、基板を保持する基板保持手段と、この基板保持手段に対向して真空容器内の下部に設けられ、膜の成膜材料を加熱し、蒸発させる蒸発源と、この蒸発源の上方に設けられたフィルタ板とを有する。フィルタ板は、平板に複数の開口部が形成されている。 (もっと読む)


【課題】有機材料を変質させることなく、少量ずつ蒸発させられる技術を提供する。
【解決手段】接続管40に挿入された供給軸71の下端に侵入防止部材76を設け、接続管40の下端のコンダクタンスを小さくする。タンク室60内部に配置された粉体の有機材料63を蒸発室20aの内部に移動させ、蒸発室20aの内部で有機材料蒸気を発生させる際に、蒸発室20a内で発生した有機材料蒸気が接続管40の内部に侵入しないようにしておく。接続管40内に加熱したシールドガスを導入し、蒸発室20aの内部に噴出させると、有機材料蒸気がシールドガスによって流されるので、一層蒸気が侵入しないようになる。 (もっと読む)


【課題】
【解決手段】微粒子材料を気化するための装置は計量装置を備え、計量装置は、貯留室130aと;内部容積空間150と、微粒子材料を収容する第1の開口部、吐出する第2の開口部160とを有するハウジング140と;内部容積空間内に配置される回転式シャフト170であり、滑らかな表面と、貯留室からの微粒子材料を収容し、微粒子材料を吐出するための外周溝とを有する、シャフトと、微粒子材料が外周溝によって輸送され、回転式シャフトの残りの部分に沿って輸送されないように協動する、回転式シャフト及び内部容積空間と;第2の開口部160との関連で配置され、端部おいて、回転式シャフト内の溝と実質的に同じ断面を有するスクレーパであり、溝と協動して該溝の中に保持される微粒子材料を取り除き、シャフトが回転するのに応じて、計量された量の微粒子材料を第2の開口部160を通じてフラッシュ蒸発器120aに送達する、スクレーパとを備える。
(もっと読む)


【課題】均一な金属薄膜が形成されるようにソース容器内のソース量を常にほぼ一定に維持することができるソース量制御が可能な真空蒸着装置を提供する。
【解決手段】真空蒸着装置は、チャンバー100と、チャンバー100内の上部に設けられる基板130と、基板130の直下に設けられ、内部にソース111が満たされるソース容器110と、ソース容器110の下面に取付けられた質量測定機120と、質量測定機120に接続されてソース容器110の質量の情報を受信する制御部140と、制御部140に接続され、ソース容器110の質量の情報に応じて制御部140で生成されたソース供給信号が伝達され、ソース容器110内にソース111を供給するソース供給機150とを含んでいる。 (もっと読む)


【課題】生産安定性が高く、緻密でガスバリア性の高いガスバリア膜を成膜できるイオンプレーティング用蒸発源材料の原料粉末等を提供する。より具体的には、イオンプレーティング法に適したイオンプレーティング用蒸発源材料の原料粉末、イオンプレーティング用蒸発源材料及びその製造方法、ガスバリア性シート及びその製造方法を提供することにある。
【解決手段】平均粒径が5μm以下の窒化ケイ素又は酸窒化ケイ素100重量部に対して、平均粒径が5μm以下の導電性材料を5重量部以上100重量部以下含有する原料粉末により、上記課題を解決する。導電性材料が、導電性を有する、金属酸化物、金属窒化物、及び金属酸窒化物から選ばれる少なくとも1つであることが好ましい。本発明のイオンプレーティング用蒸発源材料は、上記の原料粉末を焼結又は造粒させて平均粒径が2mm以上の塊状粒子又は塊状物に加工したものである。 (もっと読む)


【課題】生産性が高く、ガスバリア性、耐熱性、及び耐腐食性に優れるガスバリア膜を成膜できるイオンプレーティング用蒸発源材料の原料粉末等を提供する。
【解決手段】
平均粒径が5μm以下の窒化ケイ素又は酸窒化ケイ素と、平均粒径が5μm以下の6価のセラミック材料と、を有する原料粉末により、上記課題を解決する。この原料粉末は、6価のセラミック材料が、酸化モリブデン及び/又は窒化モリブデンであることが好ましく、6価のセラミック材料の含有量が、窒化ケイ素又は酸窒化ケイ素100重量部に対して、5重量部以上50重量部以下であることが好ましい。本発明のイオンプレーティング用蒸発源材料は、上記の原料粉末を焼結又は造粒させて平均粒径が2mm以上の塊状粒子又は塊状物に加工したものである。 (もっと読む)


【課題】効果的な修飾微粒子の形成方法の提供。
【解決手段】微粒子を単層固定させる基板表面に金を所定の厚さで蒸着する。一方、1-ethyl-3(3-dimethylaminopropyl)carbodiimidehydrochloride(通称EDC)、NaCl、あるいは、KCl等の微粒子間の静電反発力を抑制するための材料を利用した粒子固定液を作製し、これに微粒子を混合した粒子懸濁液として上記基板上に塗布することにより、金を所定の厚さで蒸着された基板表面に微粒子を単層固定させる。また、単層固定された微粒子表面に遷移金属、金属または半導体を蒸着させて修飾微粒子を形成する。基板から修飾微粒子剥離させるには、超音波洗浄装置等を利用して、基板に超音波を作用させて、剥離を促進する。修飾微粒子を生体機能分子によって修飾して生体物質の検査のための標識として利用する場合、修飾微粒子からの反射電子を利用する。 (もっと読む)


61 - 80 / 149